Skip to main content

Finite Element Modelling of the Thermo-Mechanical Behaviour of a 9Cr Martensitic Steel

  • Chapter
  • First Online:
Advanced Materials Modelling for Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 19))

Abstract

A multi-axial, unified sinh viscoplastic material model has been developed to model the behaviour of advanced materials subjected to high temperature cyclic loading. The material model accounts for rate-dependent effects related to high temperature creep and cyclic plasticity effects such as isotropic and kinematic hardening. The material model, which is capable of simulating both isothermal and anisothermal loading conditions, is implemented in multi-axial form in a material user subroutine and validated against uniaxial test data. The results validate the implementation for both isothermal and anisothermal uniaxial loading conditions for as-new P91 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASME Boiler and Pressure Vessel Code, 1998. Section II, Part D, ASME, New York (1998)

    Google Scholar 

  2. Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)

    Article  CAS  Google Scholar 

  3. Chaboche, J.L., Rousselier, G.: On the plastic and viscoplastic constitutive equations-part I: rules developed with internal variable concept. J. Press. Vessel Tech. 105, 153–158 (1983)

    Article  Google Scholar 

  4. Dunne, F., Petrinic, N.: Introduction to Computational Plasticity. Oxford University Press, Oxford (2007)

    Google Scholar 

  5. Dyson, B.F., Osgerby, S.: Modelling and analysis of creep deformation and fracture in a 1Cr1/2Mo ferritic steel. NPL Report DMM(A) 116, 1993

    Google Scholar 

  6. Farragher, T.P., Scully, S., O’Dowd, N.P., Leen, S.B.: Thermomechanical Analysis of a Pressurised Pipe Under Plant Conditions. Int. J. Press. Vessel Tech. (2012, in press)

    Google Scholar 

  7. Fournier, B., Sauzay, M., Barcelo, F., Rauch, E., Renault, A., Cozzika, T., Dupuy, L., Pineau, A.: Creep-Fatigue Interactions in a 9 Pct Cr-1 Pct Mo Martensitic Steel: Part II. Microstructural evolutions. Metall. Mater. Trans. A 40, 330–341 (2009)

    Article  Google Scholar 

  8. Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials. Wiley, New York (1996)

    Google Scholar 

  9. Hyde, C.J., Sun, W., Leen, S.B.: Cyclic thermo-mechanical material modelling and testing of 316 stainless steel. Int. J. Press. Vessel. Pip. 87, 29–33 (2010)

    Google Scholar 

  10. Koo, G.H., Kwon, J.H.: Identification of inelastic material parameters for modified 9Cr–1Mo steel applicable to the plastic and viscoplastic constitutive equations. Int. J. Press. Vessel. Pip. 88, 26–33 (2011)

    Article  CAS  Google Scholar 

  11. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  12. Mahmoudi, A.H., Pezeshki-Najafabadi, S.M., Badnava, H.: Parameter determination of Chaboche kinematic hardening model using a multi objective genetic algorithm. Comput. Mater. Sci. 50, 1114–1122 (2011)

    Article  CAS  Google Scholar 

  13. Miller, A.K.: The MATMOD equations, In: Miller, A.K. Unified Constitutive Equations for Creep and Plasticity, pp. 139–220. Elsevier Applied Science, London (1987)

    Google Scholar 

  14. Perrin, I.J., Hayhurst, D.R.: Creep constitutive equations for a 0.5Cr–0.5Mo–0.25V ferritic steel in the temperature range 600–675\({^\circ }\)C. J. Strain Anal. 31, 299–314 (1996)

    Article  Google Scholar 

  15. Saad, A.A., Hyde, C.J., Sun, W., Hyde, T.H.: Thermal-mechanical fatigue simulation of a P91 steel in a temperature range of 400–600\(^\circ \)C. Mater. High Temp. 28(3), 212–218 (2011)

    Article  CAS  Google Scholar 

  16. Saad, A.A., Sun, W., Hyde, T.H., Tanner, D.W.J.: Tanner, Cyclic softening behaviour of a P91 steel under low cycle fatigue at high temperature. Procedia Eng. 10, 1103–1108 (2011)

    Article  CAS  Google Scholar 

  17. Scully, S.: ESB Energy International, personal communication (2012)

    Google Scholar 

  18. Shrestha, T., Basirat, M., Charit, I., Potirniche, G.P., Rink, K.K., Sahaym, U.: Creep deformation mechanisms in modified 9Cr–1Mo steel. J. Nucl. Mater. 423, 110–119 (2012)

    Google Scholar 

  19. Tanner, D.W.J., Sun. W., Hyde, T.H.: FE analysis of a notched bar under thermomechanical fatigue using a unified viscoplasticity model, Procedia Engineering. Procedia Eng. 10, 1081–1086 (2011)

    Google Scholar 

  20. Tong, J., Vermeulen, B.: The description of cyclic plasticity and viscoplasticity of Waspaloy using unified constitutive equations. Int. J. Fatigue 25, 413–420 (2003)

    Article  CAS  Google Scholar 

  21. Zhan, Z.: A study of creep-fatigue interaction in a new nickel-based superalloy. PhD thesis, University of Portsmouth (2004)

    Google Scholar 

  22. Zhang, Z., Delagnes, D., Bernhart, G.: Anisothermal cyclic plasticity modelling of martensitic steels. Int. J. Fatigue 24, 635–648 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant Number SFI/10/IN.1/I3015. SBL gratefully acknowledges receipt of a Millennium Travel Grant from NUI Galway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Barrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barrett, R.A., O’Donoghue, P.E., Leen, S.B. (2013). Finite Element Modelling of the Thermo-Mechanical Behaviour of a 9Cr Martensitic Steel. In: Altenbach, H., Kruch, S. (eds) Advanced Materials Modelling for Structures. Advanced Structured Materials, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35167-9_4

Download citation

Publish with us

Policies and ethics