Skip to main content

The Effect of Temperature on Interfacial Gradient Plasticity in Metallic Thin Films

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 19))

Abstract

The material microstructural interfaces have a profound impact on the scale-dependent yield strength and strain hardening when the surface-to-volume ratio of the medium increases such as in micro and nanosystems. In this paper, the framework of higher-order strain gradient plasticity with interfacial energy effect is used to investigate the coupling of thermal and mechanical responses of materials in small scales and fast transient processes. In addition to the nonlocal yield condition for the material bulk, a temperature and rate dependent microscopic yield condition for the interface is presented, which determines the stress at which the interface begins to deform plastically and harden. In order to address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts. This, consecutively, provides the constitutive equations to have both energetic and dissipative gradient length scales \(\ell _{en}\) and \(\ell _{dis}\) respectively. Hence four material length scales are introduced: two for the bulk and the other two for the interface. In addition, the effect of temperature on the yield strength and hardening of the interface is included in the formulation by postulating that the interfacial energy decreases as temperature increases. Finally the developed framework is solved numerically to investigate the size effect of unaxial loading of a film substrate system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abu Al-Rub, R.K., Faruk, A.N.M.: Coupled interfacial energy and temperature effects on size-dependent yield strength and strain hardening of small metallic volumes. J. Eng. Mater. Technol. Trans. ASME 133(1), (2011). doi:Artn 011017, Doi 10.1115/1.4002651

  2. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    Article  Google Scholar 

  3. Aifantis, K.E., Soer, W.A., De Hosson, J.T.M., Willis, J.R.: Interfaces within strain gradient plasticity: theory and experiments. Acta Materialia 54(19), 5077–5085 (2006). doi:10.1016/j.actamat.2006.06.040

    Article  CAS  Google Scholar 

  4. Brorson, S.D., Kazeroonian, A., Moodera, J.S., Face, D.W., Cheng, T.K., Ippen, E.P., Dresselhaus, M.S., Dresselhaus, G.: Femtosecond room-temperature measurement of the electron-phonon coupling constant-lambda in metallic superconductors. Phys. Rev. Lett. 64(18), 2172–2175 (1990)

    Article  CAS  Google Scholar 

  5. Cahn, J.W.: Free energy of a nonuniform system. 2. Thermodynamic basis. J. Chem. Phys. 30(5), 1121–1124 (1959)

    Article  CAS  Google Scholar 

  6. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. 1. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  CAS  Google Scholar 

  7. Chung, Y.-w.: Introduction to Materials Science and Engineering. CRC, Boca Raton (2007)

    Google Scholar 

  8. De Hosson, J.T.M., Aifantis, K.E., Soer, W.A., Willis, J.R.: Interfaces within strain gradient plasticity: theory and experiments. Acta Materialia 54(19), 5077–5085 (2006). doi:10.1016/j.actamat.2006.06.040

    Article  Google Scholar 

  9. Elsayed-Ali, H.E., Juhasz, T., Smith, G.O., Bron, W.E.: Femtosecond thermoreflectivity and thermotransmissivity of polycrystalline and single-crystalline gold-films. Phys. Rev. B 43(5), 4488–4491 (1991)

    Article  CAS  Google Scholar 

  10. Espinosa, H.D., Prorok, B.C., Peng, B.: Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52(3), 667–689 (2004). doi:10.1016/j.jmps.2003.07.001

    Article  CAS  Google Scholar 

  11. Faghihi, D., Voyiadjis, G.Z.: Determination of nanoindentation size effects and variable material intrinsic length scale for body-centered cubic metals. Mech. Mater. (2011, in press, corrected proof). doi:10.1016/j.mechmat.2011.07.002

  12. Fleck, N.A., Willis, J.R.: A mathematical basis for strain-gradient plasticity theory—part I: scalar plastic multiplier. J. Mech. Phys. Solids 57(1), 161–177 (2009a). doi:10.1016/j.jmps.2008.09.010

    Article  Google Scholar 

  13. Fleck, N.A., Willis, J.R.: A mathematical basis for strain-gradient plasticity theory. Part II: tensorial plastic multiplier. J. Mech. Phys. Solids 57(7), 1045–1057 (2009). doi:10.1016/j.jmps.2009.03.007

    Article  CAS  Google Scholar 

  14. Forest, S., Aifantis, E.C.: Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47(25–26), 3367–3376 (2010). doi:10.1016/j.ijsolstr.2010.07.009

    Article  CAS  Google Scholar 

  15. Forest, S., Amestoy, M.: Hypertemperature in thermoelastic solids. Comptes Rendus Mecanique 336(4), 347–353 (2008). doi:10.1016/j.crme.2008.01.007

    Article  CAS  Google Scholar 

  16. Fredriksson, P., Gudmundson, P.: Size-dependent yield strength and surface energies of thin films. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 400, 448–450 (2005). doi:10.1016/j.msea.2005.02.090

    Article  Google Scholar 

  17. Fredriksson, P., Gudmundson, P.: Competition between interface and bulk dominated plastic deformation in strain gradient plasticity. Model. Simul. Mater. Sci. Eng. 15(1), S61–S69 (2007). doi:10.1088/0965-0393/15/1/S06

    Article  Google Scholar 

  18. Fujimoto, J.G., Liu, J.M., Ippen, E.P., Bloembergen, N.: Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures. Phys. Rev. Lett. 53(19), 1837–1840 (1984)

    Article  CAS  Google Scholar 

  19. Gurtin, M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92(3–4), 178–192 (1996)

    Article  CAS  Google Scholar 

  20. Gurtin, M.E., Anand, L.: Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57(3), 405–421 (2009). doi:10.1016/j.jmps.2008.12.002

    Article  CAS  Google Scholar 

  21. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, New York (2010)

    Google Scholar 

  22. Joshi, A.A., Majumdar, A.: Transient ballistic and diffusive phonon heat-transport in thin-films. J. Appl. Phys. 74(1), 31–39 (1993)

    Article  CAS  Google Scholar 

  23. Meyers, M.A., Chawla, K.K.: Mechanical Behavior of Materials, 2nd edn. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  24. Narayan, J., Godbole, V.P., White, C.W.: Laser method for synthesis and processing of continuous diamond films on nondiamond substrates. Science 252(5004), 416–418 (1991)

    Article  CAS  Google Scholar 

  25. Niordson, C.F., Hutchinson, J.W.: Non-uniform plastic deformation of micron scale objects. Int. J. Numer. Methods Eng. 56(7), 961–975 (2003). doi:10.1002/Nme.593

    Article  Google Scholar 

  26. Polizzotto, C.: A nonlocal strain gradient plasticity theory for finite deformations. Int. J. Plast. 25(7), 1280–1300 (2009). doi:10.1016/j.ijplas.2008.09.009

    Article  Google Scholar 

  27. Soer, W.A., Aifantis, K.E., De Hosson, J.T.M.: Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Materialia 53(17), 4665–4676 (2005). doi:10.1016/j.actamat.2005.07.001

    Article  CAS  Google Scholar 

  28. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Materialia 46(14), 5109–5115 (1998)

    Article  CAS  Google Scholar 

  29. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. Wiley-Interscience, Hoboken (2007)

    Google Scholar 

  30. Tzou, D.Y.: Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat Transf. 9(4), 686–693 (1995a)

    Article  CAS  Google Scholar 

  31. Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995b)

    Article  CAS  Google Scholar 

  32. Tzou, D.Y., Zhang, Y.S.: An analytical study on the fast-transient process in small scales. Int. J. Eng. Sci. 33(10), 1449–1463 (1995)

    Article  CAS  Google Scholar 

  33. Voyiadjis, G.Z., Deliktas, B.: Formulation of strain gradient plasticity with interface energy in a consistent thermodynamic framework. Int. J. Plast. 25(10), 1997–2024 (2009a). doi:10.1016/j.ijplas.2008.12.014

    Article  Google Scholar 

  34. Voyiadjis, G.Z., Deliktas, B.: Mechanics of strain gradient plasticity with particular reference to decomposition of the state variables into energetic and dissipative components. Int. J. Eng. Sci. 47(11–12), 1405–1423 (2009). doi:10.1016/j.ijengsci.2009.05.013

    Article  CAS  Google Scholar 

  35. Voyiadjis, G.Z., Faghihi, D.: Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales. Int. J. Plast. (2011a) doi:10.1016/j.ijplas.2011.10.007

  36. Voyiadjis, G.Z., Faghihi, D.: Variable (intrinsic) material length scale for face-centred cubic metals using nano-indentation. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. (2011b). doi:10.1177/1740349911413647

  37. Zhang, J., Zhao, J.J.: Unconditionally stable finite difference scheme and iterative solution of 2D microscale heat transport equation. J. Comput. Phys. 170(1), 261–275 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Z. Voyiadjis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voyiadjis, G., Faghihi, D. (2013). The Effect of Temperature on Interfacial Gradient Plasticity in Metallic Thin Films. In: Altenbach, H., Kruch, S. (eds) Advanced Materials Modelling for Structures. Advanced Structured Materials, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35167-9_31

Download citation

Publish with us

Policies and ethics