Skip to main content

Kelvin Modes Based Cubic Plasticity and Induced Anisotropic Damage: Application to Creep of AM1 Single Crystal

  • Chapter
  • First Online:
Advanced Materials Modelling for Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 19))

Abstract

Modelling the anisotropic elasto-visco-plastic and damage behavior of FCC single crystal superalloys is a crucial issue, especially in the aircraft engines industry that widely uses such alloys for parts such as turbine blades. If micro-scale written models based on the theory of crystal plasticity and developed at the slip system level have already proved efficient in several loading cases, it is also possible to propose a novel meso-scale model based on Kelvin decomposition of  Hooke elasticity tensor which is here applied to the initial cubic symmetry of these superalloys. Three modes (and three corresponding stresses) are then highlighted and used to build a yield criterion which is extended to plasticity and then to visco-plasticity; this fully defined model is identified and validated on different loading cases. The Kelvin modes decomposition also enables the full construction of an anisotropic damage model (described by a second order tensor damage variable), from the definition of a cubic effective stress ensuring the coupling of elasto-visco-plasticity (micro- or meso-scale written) with damage, to the incremental damage law. Coupling is here detailed and carried out at 950 °C for \(\langle 001\rangle , \langle 111 \rangle \) and \(\langle 011 \rangle \) oriented creep (primary to tertiary) of AM1 single crystal, thus validating the proposed visco-plastic and damage models and corresponding parameters sets that are easily identified thanks to the decoupling of Kelvin modes in crystalline orientations \(\langle 001 \rangle \) and \(\langle 111 \rangle \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barlat, F., Lege, D.J., Brem, J.C.: A six-component yield function for anisotropic materials. Int. J. Plast. 7, 693–712 (1991)

    Article  CAS  Google Scholar 

  2. Cailletaud, G.: Une approche micromécanique phénoménologique du comportement inélastique des métaux. Thèse d’État, Université Paris VI (1987)

    Google Scholar 

  3. Delautre, J., Lautridou, J.-C., Guédou, J.-Y.: Compréhension des mécanismes de déformation plastique et viscoplastique monotone et cyclique des monocristaux en alliage AM1, vol. YKOM1/60066. Note technique Snecma (1988)

    Google Scholar 

  4. Desmorat, R.: Décomposition de Kelvin et concept de contraintes effectives multiples pour les matériaux anisotropes. C.R. Mécanique, 337, 733–738 (2009)

    Google Scholar 

  5. Desmorat, R., Marull, R.: Non quadratic Kelvin modes based plasticity criteria for anisotropic materials. Int. J. Plast. 27, 328–351 (2011)

    Article  CAS  Google Scholar 

  6. Fedelich, B.: A microstructure based constitutive model for the mechanical behavior at high temperatures of Nickel-base single crystal superalloys. Comput. Mater. Sci. 16, 248–258 (1999)

    Article  CAS  Google Scholar 

  7. François, M.: Identification des symétries matérielles de matériaux anisotropes. Ph.D., Université Paris VI, Cachan (1995)

    Google Scholar 

  8. Hosford, W.F.: On the crystallographic basis of yield criteria. Textures Microstruct. 26–27, 479–493 (1996)

    Google Scholar 

  9. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, pp. 541–547 (1983)

    Google Scholar 

  10. Lemaitre, J.: Evaluation of dissipation and damage in metals. In: Proceedings of I.C.M. Kyoto, Japan (1971)

    Google Scholar 

  11. Lemaitre, J.: Sur la détermination des lois de comportement des matériaux élasto-viscoplastiques. Thèse d’État, Université Paris XI, Orsay (1971)

    Google Scholar 

  12. Lemaitre, J., Desmorat, R., Sauzay, M.: Anisotropic damage law of evolution. Eur. J. Mech. A/Solids 19, 197–208 (2000)

    Google Scholar 

  13. Lemaitre, J., Chaboche, J.-L.: Mécanique des matériaux solides. Dunod, Paris (1985)

    Google Scholar 

  14. Marull, R.: Plasticités cubiques et endommagement anisotrope induit pour les superalliages monocristallins sous chargement complexe. Ph.D., ENS Cachan, Cachan (2011)

    Google Scholar 

  15. Méric, L., Poubanne, Ph, Cailletaud, G.: Single crystal modelling for structural calculations: part 1—model presentation. J. Eng. Mater. Technol. 113, 162–170 (1991)

    Article  Google Scholar 

  16. Murakami, S., Ohno, N.: A continuum theory of creep and creep damage. In: Ponter, A.R.S., Hayhurst, D.R. (eds.) 3rd Creep in Structures Symposium, Leicester, IUTAM, pp. 422–443. Springer, Heidelberg (1980)

    Google Scholar 

  17. Nouailhas, D.: Anisotropic constitutive equations for cyclic viscoplasticity: application to the case of materials with cubic symmetry. Rech. Aerosp. 3, 11–28 (1990)

    Google Scholar 

  18. Nouailhas, D., Cailletaud, G.: Tension-torsion behavior of single crystal superalloys: experiment and finite element analysis. Int. J. Plast. 11, 451–470 (1995)

    Article  CAS  Google Scholar 

  19. Ostrosablin, N.I.: On the structure of the elasticity moduli tensor: elastic eigenstates. In: Dynamics of Continuous Media (in Russian), vol. 66, pp. 113–125. Acad. Sci. USSR (1984)

    Google Scholar 

  20. Poubanne, Ph: Étude et modélisation du comportement mécanique d’un superalliage monocristallin pour aube de turbine. Ph.D., École Centrale Paris, Chatillon (1989)

    Google Scholar 

  21. Rychlewski, J.: On Hooke’s law. Prikl. Matem. Mekhan. 48, 303–314 (1984)

    Google Scholar 

  22. Thomson, W.K. (Lord Kelvin): Elements of a mathematical theory of elasticity. Phil. Trans. R. Soc. 166, 481 (1856)

    Google Scholar 

  23. Thomson, W.K. (Lord Kelvin): Elasticity, Encyclopaedia Britannica. Adam and Charles Black, Edinburgh (1878)

    Google Scholar 

  24. Walker, K.P., Jordan, E.H.: Constitutive modelling of superalloy single crystals and directionally solidified materials, p. 65. Research center nonlinear constitutive relations for high temperature applications. NASA-CP-2369 (1984)

    Google Scholar 

Download references

Acknowledgments

The authors thank Snecma (Safran group) that supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxane Marull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marull, R., Desmorat, R. (2013). Kelvin Modes Based Cubic Plasticity and Induced Anisotropic Damage: Application to Creep of AM1 Single Crystal. In: Altenbach, H., Kruch, S. (eds) Advanced Materials Modelling for Structures. Advanced Structured Materials, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35167-9_20

Download citation

Publish with us

Policies and ethics