Skip to main content

Damage Deactivation of Engineering Materials and Structures

  • Chapter
  • First Online:
Advanced Materials Modelling for Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 19))

Abstract

When a material is subjected to a cyclic loading at high values of stress or strain, damage develops together with cyclic plastic strain. This process is often accompanied by damage deactivation characterized by actual state of microcracks, which are generally active under tension and passive under compression. In classical formulation damage deactivation occurs instantly when loading changes sign and consequently leads to non smooth path separating both load ranges. The real materials, however, do not exhibit such bilinear paths. Therefore, the more realistic model based on continuous damage deactivation is proposed, in which microcracks close gradually. In the present paper several applications of continuous damage deactivation in modelling of cycle fatigue of engineering materials such as: aluminum alloy Al-2024 and ferritic steel 20MnMoNi55 are demonstrated and compared with experimental results. Detail quantitative and qualitative analysis of obtained solutions confirms necessity and correctness of proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdul-Latif, A., Chadli, M.: Modelling of the heterogeneous damage evolution at the granular scale in polycrystals under complex cyclic loadings. Int. J. Damage Mech. 16(2), 133–158 (2007)

    Article  CAS  Google Scholar 

  2. Brocks, W., Steglich, D.: Damage models for cyclic plasticity. In: Buchholtz, F.-G., Richard, H.A., Aliabadi, M.H. (eds) Advances in Fracture and Damage Mechanics. Trans Tech Publ, Zürich (2003)

    Google Scholar 

  3. Cegielski, M.: Effect of continuous damage deactivation in CDM. Ph.D. Thesis, Cracow University of Technology (2012)

    Google Scholar 

  4. Chaboche, J.-L.: Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition. Int. J. Damage Mech. 1(2), 148–171 (1992)

    Article  Google Scholar 

  5. Chaboche, J.-L.: Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage. Int. J. Damage Mech. 2, 311–329 (1993)

    Article  Google Scholar 

  6. Chaboche, J.-L., et al.: Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites. Int. J. Damage Mech. 4, 5–21 (1995)

    Google Scholar 

  7. Cegielski, M., Ganczarski, A.: Effect of continuous damage deactivation on yield and failure surfaces. Acta Mech. Automatica 1(2), 11–14 (2007)

    Google Scholar 

  8. Ganczarski, A., Cegielski, M.: Application of the continuous damage deactivation to a modelling of low cycle fatigue of aluminum alloy Al-2024. Czas Tech. 5(105), 61–70 (2008)

    Google Scholar 

  9. Halm, D., Dragon, A.: A model of anisotropic damage by mesocrack growth; unilateral effect. Int. J. Damage Mech. 5, 384–402 (1996)

    Article  Google Scholar 

  10. Halm, D., Dragon, A.: An anisotropic model of damage and frictional sliding for brittle materials. Eur. J. Mech. A. Solids 17(3), 439–460 (1998)

    Article  Google Scholar 

  11. Hansen, N.R., Schreyer, H.L.: Damage deactivation. Trans. ASME 62, 450–458 (1995)

    Article  Google Scholar 

  12. Hayakawa, K., Murakami, S.: Thermodynamical modelling of elastic-plastic damage and experimental validation of damage potential. Int. J. Damage Mech. 6, 333–363 (1997)

    Article  Google Scholar 

  13. Ju, J.W.: On energy based coupled elastoplastic damage theories: constitutive modelling and computational aspects. Int. J. Solids Struct. 25(7), 803–833 (1989)

    Article  Google Scholar 

  14. Krajcinovic, D.: Damage mechanics. Elsevier, Amsterdam (1996)

    Google Scholar 

  15. Krajcinovic, D., Fonseka, G.U.: The continuous damage theory of brittle materials, part I and II. J. Appl. Mech. ASME 18, 809–824 (1981)

    Article  Google Scholar 

  16. Ladeveze, P., Lemaitre, J.: Damage effective stress in quasi-unilateral conditions. Proc IUTAM Congr Lyngby, Denmark (1984)

    Google Scholar 

  17. Lemaitre, J.: A course on damage mechanics. Springer, Berlin (1992)

    Google Scholar 

  18. Lemaitre, J., Chaboche, J.-L.: Mécanique des matériaux solides. Bordas, Paris (1985)

    Google Scholar 

  19. Litewka, A.: Creep damage and creep rupture of metals. Wyd Polit Poznańskiej (1991)

    Google Scholar 

  20. Mazars, J.: A model of unilateral elastic damageable material and its application to concrete. In: Wittmann, F.H. (ed) Energy Toughness and Fracture Energy of Concrete. Elsevier, Amsterdam (1986)

    Google Scholar 

  21. Murakami, S., Kamiya, K.: Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int. J. Solids Struc. 39(4), 473–486 (1997)

    Google Scholar 

  22. Ramtani, S.: Contribution á la modelisation du comportement multiaxial du beton endommagé avec description du caractere unilateral. Ph.D. Thesis, Univ Paris VI (1990)

    Google Scholar 

  23. Skrzypek, J.J., Ganczarski, A.: Modelling of material damage and failure of structures. Springer, Berlin (1999)

    Google Scholar 

  24. Skrzypek, J.J., Kuna-Ciskał, H.: Anisotropic elastic-brittle-damage and fracture models based on irreversible thermodynamic. In: Skrzypek, J.J., Ganczarski, A. (eds) Anisotropic Behaviour of Damaged Materials. Springer, Berlin (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Ganczarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ganczarski, A., Cegielski, M. (2013). Damage Deactivation of Engineering Materials and Structures. In: Altenbach, H., Kruch, S. (eds) Advanced Materials Modelling for Structures. Advanced Structured Materials, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35167-9_15

Download citation

Publish with us

Policies and ethics