Skip to main content

Part of the book series: Differential-Algebraic Equations Forum ((DAEF))

  • 2207 Accesses

Abstract

In this chapter, we turn our attention to the more general class of flexible multibody systems that include rigid as well as elastic bodies. While an elastic body is described by a partial differential equation, the rigid body motion, on the other hand, satisfies an ordinary differential equation or, in the presence of Euler parameters or joints, a differential-algebraic equation. Thus, the overall mathematical model consists of a coupled system with a subtle structure. We apply a step-by-step procedure in order to derive the underlying models. This chapter is mainly devoted to the motion of a single elastic body under the assumption of linear elasticity. Large rotations and translations will be treated by the method of floating reference frames in the subsequent Chap. 4. Hamilton’s principle of stationary action is the starting point to generate the equations of motion. Constraints are appended by means of Lagrange multipliers and lead to the notion of a time-dependent saddle point formulation that can be viewed as the continuous analogue of the constrained system for rigid bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Babuška, The finite element method with Lagrange multipliers. Numer. Math. 20(3), 179–192 (1973)

    Article  MATH  Google Scholar 

  2. D. Braess, Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  3. S. Brenner, R. Scott, The Mathematical Theory of Finite Element Methods (Springer, New York, 1991)

    Google Scholar 

  4. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  5. P.G. Ciarlet, Mathematical Elasticity I (North Holland, New York, 1988)

    MATH  Google Scholar 

  6. R. Courant, D. Hilbert, Methoden der mathematischen Physik I (Springer, Heidelberg, 1968)

    Book  MATH  Google Scholar 

  7. W. Dahmen, A. Kunoth, Appending boundary conditions by Lagrange multipliers: analysis of the LBB condition. Numer. Math. 88, 9–42 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics (Springer, New York, 1975)

    Google Scholar 

  9. M. Günther, Partielle differential-algebraische Systeme in der numerischen Zeitbereichsanalyse elektrischer Schaltungen (VDI-Verlag, Düsseldorf, 2001)

    Google Scholar 

  10. I. Higueras, Numerical methods for stiff index 3 DAEs. Math. Comput. Model. Dyn. Syst. 7(2), 239–262 (2001)

    Article  MATH  Google Scholar 

  11. T.J. Hughes, The Finite Element Method (Prentice Hall, Englewood Cliffs, 1987)

    MATH  Google Scholar 

  12. N. Kikuchi, J.T. Oden, Contact Problems in Elasticity (SIAM, Philadelphia, 1988)

    MATH  Google Scholar 

  13. J. Marsden, T.J. Hughes, Mathematical Foundations of Elasticity (Prentice Hall, Englewood Cliffs, 1983)

    MATH  Google Scholar 

  14. B. Simeon, Numerische Simulation gekoppelter Systeme von partiellen und differential-algebraischen Gleichungen in der Mehrkörperdynamik (VDI-Verlag, Düsseldorf, 2000)

    Google Scholar 

  15. B. Simeon, R. Serban, L.R. Petzold, A model of macroscale deformation and microvibration in skeletal muscle tissue. Modél. Math. Anal. Numér. 43, 805–823 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.M. Solberg, P. Papadopoulos, An analysis of dual formulations for the finite element solution of two-body contact problems. Comput. Methods Appl. Mech. Eng. 194, 2734–2780 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  18. A. Toselli, O. Widlund, Domain Decomposition Methods—Algorithms and Theory (Springer, New York, 2005)

    MATH  Google Scholar 

  19. B. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition (Springer, New York, 2001)

    Book  MATH  Google Scholar 

  20. B. Wohlmuth, R. Krause, Monotone methods on non-matching grids for non-linear contact problems. SIAM J. Sci. Comput. 25(1), 324–347 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Wriggers, Computational Contact Mechanics (Wiley, Chichester, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simeon, B. (2013). Elastic Motion. In: Computational Flexible Multibody Dynamics. Differential-Algebraic Equations Forum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35158-7_3

Download citation

Publish with us

Policies and ethics