Skip to main content

A Naïve Hypergraph Model of Brain Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7670))

Abstract

This paper extended the concept of motif by maximum cliques defined as “hyperedges” in brain networks, as novel and flexible characteristic network building blocks. Based on the definition of hyperedge, a naïve brain hypergraph model was constructed from a graph model of large-scale brain functional networks during rest. Nine intrinsic hub hyperedges of functional connectivity were identified, which could be considered as the most important intrinsic information processing blocks (or units), and they also covered many components of the core brain intrinsic networks. Furthermore, these overlapped hub hyperedges were assembled into a compound structure as a core subsystem of the intrinsic brain organization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends in Cognitive Sciences 8, 418–425 (2004)

    Article  Google Scholar 

  2. Bassett, D.S., Bullmore, E.D.: Small-world brain networks. Neuroscientist 12, 512–523 (2006)

    Article  Google Scholar 

  3. Bressler, S.L., Menon, V.: Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences 14, 277–290 (2010)

    Article  Google Scholar 

  4. Menon, V.: Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences 15, 483–506 (2011)

    Article  Google Scholar 

  5. Watts, D.J., Strogatz, S.H.: Collective dynamics of ”small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  6. Latora, V., Marchiori, M.: Efficient behaviour of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)

    Article  Google Scholar 

  7. Latora, V., Marchiori, M.: Economic small-world behaviour in weighted networks. Euro. Phys. JB. 32, 249–263 (2003)

    Google Scholar 

  8. Eguíluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005)

    Google Scholar 

  9. Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E.D.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005a)

    Article  Google Scholar 

  10. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.D.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26, 63–72 (2006)

    Article  Google Scholar 

  11. Van den Heuvel, M.P., Stam, C.J., Boersma, M., Hulshoff Pol, H.E.: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008)

    Article  Google Scholar 

  12. Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.P.: Mapping the structural core of human cerebral cortex. PLoS ONE 2, e597 (2007)

    Google Scholar 

  13. He, Y., Chen, Z.J., Evans, A.C.: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17, 2407–2419 (2007)

    Article  Google Scholar 

  14. Iturria-Medina, Y., Sotero, R.C., Canales-Rodriguez, E.J., Aleman-Gomez, Y., Melie-Garcia, L.: Studying the human brain ananatomical network via diffusion-weighted MRI and graph theory. NeuroImage 40, 1064–1076 (2008)

    Article  Google Scholar 

  15. Sporns, O., Honey, C.J., Kötter, R.: Identification and classification of hubs in brain networks. PLoS Biology 2, e1049 (2004)

    Google Scholar 

  16. He, Y., Wang, J., Wang, L., Chen, Z.J., Yan, C., Yang, H., Tang, H., Zhu, C., Gong, Q., Zang, Y., Evans, A.C.: Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS ONE 4, e5226 (2009)

    Google Scholar 

  17. Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biology 2, e369 (2004)

    Google Scholar 

  18. Costa, L.F., Rodrigues, F.A.: Superedges: connecting structure and dynamics in complex networks. arXiv:0801.4068v2 (2008)

    Google Scholar 

  19. De Vico Fallani, F., Rodrigues, F.A., Costa, L.F., Astolfi, L., Cincotti, F., Mattia, D., Salinari, S., Babiloni, F.: Multiple pathways analysis of brain functional networks from EEG signals: an application to real data. Brain Topogr. 23, 344–354 (2011)

    Article  Google Scholar 

  20. Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cere. Cortex (2011), doi: 10.1093/cercor/bhr099

    Google Scholar 

  21. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678 (2005)

    Article  Google Scholar 

  22. Jenkins, G.M., Watts, D.G.: Spectral Analysis and Its Applications. Holden-Day, San Francisco (1968)

    Google Scholar 

  23. Bonacich, P.: Techinique for analyzing overlapping memberships. Sociological Methodology 4, 176–185 (1972)

    Article  Google Scholar 

  24. Bonacich, P., Holdren, A.C., Johnston, M.: Hyper-edges and multidimensional centrality. Social Networks 26, 189–203 (2004)

    Article  Google Scholar 

  25. Perron, O.: Zur Theorie der Matrices. Mathematische Annalen 64, 248–263 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frobenius, G.: Üeber Matrizen aus nicht negativen Elementen. Sitzungsber. Königl. Preuss. Akad. Wiss (Berlin), 456–477 (1912)

    Google Scholar 

  27. Shulman, G.L., Fiez, J.A., Corbetta, M., Buckner, R.L., Miezin, F.M., Raichle, M.E., Petersen, S.E.: Common blood flow changes across visual tasks: II. decreases in cerebral cortex. J. Cognit. Neurosci. 9, 648–663 (1997)

    Article  Google Scholar 

  28. Raichle, M.E., Macleod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.: A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–682 (2001)

    Article  Google Scholar 

  29. Cole, M.W., Pathak, S., Schneider, W.: Identifying the brain’s most globally connected regions. NeuroImage 49, 3132–3148 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z. et al. (2012). A Naïve Hypergraph Model of Brain Networks. In: Zanzotto, F.M., Tsumoto, S., Taatgen, N., Yao, Y. (eds) Brain Informatics. BI 2012. Lecture Notes in Computer Science(), vol 7670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35139-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35139-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35138-9

  • Online ISBN: 978-3-642-35139-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics