Skip to main content

Optimizing β-Lactam Antibiotic Therapy in the Critically Ill: Moving Towards Patient-tailored Antibiotic Therapy

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2013

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2751 Accesses

Abstract

Infection is an extremely important problem in critical care medicine. In a recent point prevalence study, 71 % of over 13,000 patients admitted to intensive care units (ICUs) around the world received antibiotic therapy [1]. Sepsis alone is the leading cause of mortality in non-cardiac ICUs with up to 30 % of patients dying within one month of diagnosis [1, 2]; and the incidence of severe sepsis is increasing at a rate of around 10 % per year [3]. Adequate antibiotic therapy is one of the mainstays in the treatment of sepsis, and several studies have demonstrated that delayed and inappropriate treatment is associated with increased mortality. Timely administration and appropriateness of the spectrum of antibiotic therapy have, therefore, been massively promoted in sepsis guidelines, such as the Surviving Sepsis Campaign and comparable initiatives [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vincent JL, Rello J, Marshall J et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329

    Article  PubMed  CAS  Google Scholar 

  2. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  3. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554

    Article  PubMed  Google Scholar 

  4. Leibovici L, Shraga I, Drucker M, Konigsberger H, Samra Z, Pitlik SD (1998) The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 244:379–386

    Article  PubMed  CAS  Google Scholar 

  5. Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37:840–851

    Article  PubMed  CAS  Google Scholar 

  6. Ulldemolins M, Rello J (2011) The relevance of drug volume of distribution in antibiotic dosing. Curr Pharm Biotechnol 12:1996–2001

    Article  PubMed  CAS  Google Scholar 

  7. Roberts DM (2011) The relevance of drug clearance to antibiotic dosing in critically ill patients. Curr Pharm Biotechnol 12:2002–2014

    Article  PubMed  CAS  Google Scholar 

  8. Hedaya MA (2007) Drug pharmacokinetics following a single IV administration. In: Basic Pharmacokinetics. CRC Press, Boca Raton

    Google Scholar 

  9. Sinnollareddy MG, Roberts MS, Lipman J, Roberts JA (2012) Beta-lactam pharmacokinetics and pharmacodynamics in critically ill patients and strategies for dose optimization: A structured review. Clin Exp Pharmacol Physiol 39:489–496

    Article  PubMed  CAS  Google Scholar 

  10. Marshall JC (2001) Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 29:S99–S106

    Article  PubMed  CAS  Google Scholar 

  11. Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J (2010) Augmented renal clearance implications for antibacterial dosing in the critically ill. Clin Pharmacokinet 49:1–16

    Article  PubMed  CAS  Google Scholar 

  12. Di Giantomasso D, May CN, Bellomo R (2003) Vital organ blood flow during hyperdynamic sepsis. Chest 124:1053–1059

    Article  PubMed  Google Scholar 

  13. Udy A, Roberts JA, Boots RJ, Lipman J (2009) You only find what you look for: the importance of high creatinine clearance in the critically ill. Anaesth Intensive Care 37:11–13

    PubMed  CAS  Google Scholar 

  14. Fuster-Lluch O, Geronimo-Pardo M, Peyro-Garcia R, Lizan-Garcia M (2008) Glomerular hyperfiltration and albuminuria in critically ill patients. Anaesth Intensive Care 36:674–680

    PubMed  CAS  Google Scholar 

  15. Udy A, Boots R, Senthuran S et al (2010) Augmented creatinine clearance in traumatic brain injury. Anesth Analg 111:1505–1510

    Article  PubMed  CAS  Google Scholar 

  16. Conil JM, Georges B, Lavit M et al (2007) Pharmacokinetics of ceftazidime and cefepime in burn patients: The importance of age and creatinine clearance. Int J Clin Pharmacol Ther 45:529–538

    PubMed  CAS  Google Scholar 

  17. Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J (2011) The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet 50:99–110

    Article  PubMed  CAS  Google Scholar 

  18. Finfer S, Bellomo R, McEvoy S et al (2006) Effect of baseline serum albumin concentration on outcome of resuscitation with albumin or saline in patients in intensive care units: analysis of data from the saline versus albumin fluid evaluation (SAFE) study. BMJ 333:1044–1046

    Article  PubMed  CAS  Google Scholar 

  19. Turnidge JD (1998) The pharmacodynamics of beta-lactams. Clin Infect Dis 27:10–22

    Article  PubMed  CAS  Google Scholar 

  20. Vogelman B, Craig WA (1986) Kinetics of antimicrobial activity. J Pediatr 108:835–840

    Article  PubMed  CAS  Google Scholar 

  21. Ong CT, Tessier PR, Li C, Nightingale CH, Nicolau DP (2007) Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM efflux pumps. Diagn Microbiol Infect Dis 57:153–161

    Article  PubMed  CAS  Google Scholar 

  22. Roberts JA, Kirkpatrick CMJ, Roberts MS, Dalley AJ, Lipman J (2010) First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int J Antimicrob Agents 35:156–163

    Article  PubMed  CAS  Google Scholar 

  23. Roberts JA, Kirkpatrick CMJ, Roberts MS, Robertson TA, Dalley AJ, Lipman J (2009) Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 64:142–150

    Article  PubMed  CAS  Google Scholar 

  24. Taccone FS, Laterre PF, Dugernier T et al (2010) Insufficient beta-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care 14:R126

    Article  PubMed  Google Scholar 

  25. Buijk S, Gyssens IC, Mouton JW, Van Vliet A, Verbrugh HA, Bruining HA (2002) Pharmacokinetics of ceftazidime in serum and peritoneal exudate during continuous versus intermittent administration to patients with severe intra-abdominal infections. J Antimicrob Chemother 49:121–128

    Article  PubMed  CAS  Google Scholar 

  26. Georges B, Conil JM, Cougot P et al (2005) Cefepime in critically ill patients: continuous infusion vs. an intermittent dosing regimen. Int J Clin Pharmacol Ther 43:360–369

    PubMed  CAS  Google Scholar 

  27. Langgartner J, Vasold A, Glueck T, Reng M, Kees F (2008) Pharmacokinetics of meropenem during intermittent and continuous intravenous application in patients treated by continuous renal replacement therapy. Intensive Care Med 34:1091–1096

    Article  PubMed  CAS  Google Scholar 

  28. Thalhammer F, Traunmuller F, El Menyawi I et al (1999) Continuous infusion versus intermittent administration of meropenem in critically ill patients. J Antimicrob Chemother 43:523–527

    Article  PubMed  CAS  Google Scholar 

  29. Angus BJ, Smith MD, Suputtamongkol Y et al (2000) Pharmacokinetic-pharmacodynamic evaluation of ceftazidime continuous infusion vs intermittent bolus injection in septicaemic melioidosis. Br J Clin Pharmacol 50:183–191

    Article  Google Scholar 

  30. Rafati MR, Rouini MR, Mojtahedzadeh M et al (2006) Clinical efficacy of continuous infusion of piperacillin compared with intermittent dosing in septic critically ill patients. Int J Antimicrob Agents 28:122–127

    Article  PubMed  CAS  Google Scholar 

  31. Langgartner J, Lehn N, Glueck T, Herzig H, Kees F (2007) Comparison of the pharmacokinetics of piperacillin and sulbactam during intermittent and continuous intravenous infusion. Chemotherapy 53:370–377

    Article  PubMed  CAS  Google Scholar 

  32. Roberts JA, Roberts MS, Robertson TA, Dalley AJ, Lipman J (2009) Piperacillin penetration into tissue of critically ill patients with sepsis-Bolus versus continuous administration? Crit Care Med 37:926–933

    Article  PubMed  Google Scholar 

  33. De Waele J, Carlier M, Hoste E et al (2011) Extended infusion of meropenem and piperacillin in critically ill patients: A pharmacokinetic/pharmacodynamic analysis. Crit Care Med 39:198

    Google Scholar 

  34. Roberts JA, Boots R, Rickard CM et al (2007) Is continuous infusion ceftriaxone better than once-a-day dosing in intensive care? A randomized controlled pilot study. J Antimicrob Chemother 59:285–291

    Article  PubMed  CAS  Google Scholar 

  35. Lorente L, Jimenez A, Martin MM, Iribarren JL, Jose Jimenez J, Mora ML (2009) Clinical cure of ventilator-associated pneumonia treated with piperacillin/tazobactam administered by continuous or intermittent infusion. Int J Antimicrob Agents 33:464–468

    Article  PubMed  CAS  Google Scholar 

  36. Chytra I, Stepan M, Benes J et al (2012) Clinical and microbiological efficacy of continuous versus intermittent application of meropenem in critically ill patients: a randomized open-label controlled trial. Crit Care 16:R113

    Article  PubMed  Google Scholar 

  37. Tamma PD, Putcha N, Suh YD, Van Arendonk KJ, Rinke ML (2011) Does prolonged beta-lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials. BMC Infect Dis 11:181

    Article  PubMed  Google Scholar 

  38. Viaene E, Chanteux H, Servais H, Mingeot-Leclercq MP, Tulkens PM (2002) Comparative stability studies of antipseudomonal beta-lactams for potential administration through portable elastomeric pumps (home therapy for cystic fibrosis patients) and motor-operated syringes (intensive care units). Antimicrob Agents Chemother 46:2327–2332

    Article  PubMed  CAS  Google Scholar 

  39. Mathew M, Gupta VD, Bethea C (1994) Stability of piperacillin sodium in the presence of tazobactam sodium in 5 % dextrose and normal saline injections. J Clin Pharm Ther 19:397–399

    Article  PubMed  CAS  Google Scholar 

  40. Wildfeuer A, Rader K (1996) Stability of beta-lactamase inhibitors and beta-lactam antibiotics in parenteral dosage forms and in body fluids and tissue homogenates: A comparative study of sulbactam, clavulanic acid, ampicillin and amoxycillin. Int J Antimicrob Agents 6:31–S34 (Reprinted from Arzneim Forsch, vol 41, pg 70, 1991)

    Google Scholar 

  41. Claus B, Buyle F, Robays H, Vogelaers D (2010) Importance of infusion volume and pump characteristics in extended administration of beta-lactam antibiotics. Antimicrob Agents Chemother 54:4950–4950

    Article  PubMed  CAS  Google Scholar 

  42. Van Herendael B, Jeurissen A, Tulkens PM et al (2012) Continuous infusion of antibiotics in the critically ill: The new holy grail for beta-lactams and vancomycin? Ann Intensive Care 2:22

    Article  PubMed  Google Scholar 

  43. Lemaire-Hurtel AS, Gras-Champel V, Hary L, Masmoudi K, Massy Z, Andréjak M (2009) Recommended dosage adaptation based on renal function is not always sufficient to avoid betalactam antibiotics side effects. Nephrol Ther 5:144–148

    Article  PubMed  Google Scholar 

  44. Roberts DM, Roberts JA, Roberts MS et al (2012) Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: A multicenter pharmacokinetic study. Crit Care Med 40:1523–1528

    Article  PubMed  CAS  Google Scholar 

  45. Tröger U, Drust A, Martens-Lobenhoffer J, Tanev I, Braun-Dullaeus RC, Bode-Böger SM (2012) Decreased meropenem levels in Intensive Care Unit patients with augmented renal clearance: benefit of therapeutic drug monitoring. Int J Antimicrob Agents 40:370–372

    Article  PubMed  Google Scholar 

  46. Mouton JW, Vinks A (1996) Is continuous infusion of beta-lactam antibiotics worthwhile? Efficacy and pharmacokinetic considerations. J Antimicrob Chemother 38:5–15

    Article  PubMed  CAS  Google Scholar 

  47. Roberts JA (2011) Using PK/PD to optimize antibiotic dosing for critically ill patients. Curr Pharm Biotechnol 12:2070–2079

    Article  PubMed  CAS  Google Scholar 

  48. Roberts JA, Hope WW, Lipman J (2010) Therapeutic drug monitoring of beta-lactams for critically ill patients: unwarranted or essential? Int J Antimicrob Agents 35:419–420

    Article  PubMed  CAS  Google Scholar 

  49. Carlier M, Stove V, Roberts JA, Van de Velde E, De Waele JJ, Verstraete AG (2012) Quantification of seven b-lactam antibiotics and two b-lactamase inhibitors in human plasma using a validated UPLC-MS/MS method. Int J Antimicrob Agents 40:416–422

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement:

Mieke Carlier is funded by a fellowship from the Research Foundation Flanders

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. De Waele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carlier, M., Stove, V., De Waele, J.J. (2013). Optimizing β-Lactam Antibiotic Therapy in the Critically Ill: Moving Towards Patient-tailored Antibiotic Therapy. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics