Skip to main content

Abstract

Renal oxygenation is defined as the relationship between renal oxygen delivery (DO2) and renal oxygen consumption (VO2) and it can easily be shown that the inverse of this relationship is equivalent to renal extraction of O2 (O2Ex). An increase in renal O2Ex means that renal DO2 has decreased in relation to renal VO2, i. e., renal oxygenation is impaired, and vice versa. When compared to other major organs, renal VO2 is relatively high, second only to the heart. In sedated, mechanically ventilated patients, renal VO2 is two-thirds (10 ml/min) that of myocardial oxygen consumption (15 ml/min) (Table 1) [1, 2]. Renal blood flow, which accounts for approximately 20 % of cardiac output, is three times higher than myocardial blood flow in this group of patients. Renal O2Ex in the non-failing kidney is therefore low, 10 %, compared with, e.g., the heart, in which O2EX is 55 % (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zäll S, Milocco I, Ricksten SE (1991) Effects of adenosine on myocardial blood flow and metabolism after coronary artery bypass surgery. Anesth Analg 73:689–695

    PubMed  Google Scholar 

  2. Redfors B, Bragadottir G, Sellgren J, Swärd K, Ricksten SE (2010) Acute renal failure is NOT an “acute renal success” – a clinical study on the renal oxygen supply/demand relationship in acute kidney injury. Crit Care Med 38:1695–1701

    Article  PubMed  Google Scholar 

  3. Kiil F, Aukland K, Refsum HE (1961) Renal sodium transport and oxygen consumption. Am J Physiol 201:511–516

    PubMed  CAS  Google Scholar 

  4. Torelli G, Milla E, Faelli A, Costantini S (1966) Energy requirement for sodium reabsorption in the in vivo rabbit kidney. Am J Physiol 211:576–580

    PubMed  CAS  Google Scholar 

  5. Swärd K, Valsson F, Sellgren J, Ricksten SE (2004) Differential effects of human atrial natriuretic peptide and furosemide on glomerular filtration rate and renal oxygen consumption in humans. Intensive Care Med 31:79–85

    Article  PubMed  Google Scholar 

  6. Redfors B, Swärd K, Sellgren J, Ricksten SE (2009) Effects of mannitol alone and mannitol plus furosemide on renal oxygen consumption, blood flow and glomerular filtration after cardiac surgery. Intensive Care Med 35:115–122

    Article  PubMed  CAS  Google Scholar 

  7. Bragadottir G, Redfors B, Nygren A, Sellgren J, Ricksten SE (2009) Low-dose vasopressin increases glomerular filtration rate, but impairs renal oxygenation in post-cardiac surgery patients. Acta Anaesthesiol Scand 53:1052–1059

    Article  PubMed  CAS  Google Scholar 

  8. O’Connor PM (2006) Renal oxygen delivery: matching delivery to metabolic demand. Clin Exp Pharmacol Physiol 33:961–967

    Article  PubMed  Google Scholar 

  9. Levy MN (1960) Effect of variations of blood flow on renal oxygen extraction. Am J Physiol 199:13–18

    PubMed  CAS  Google Scholar 

  10. Chou SY, Porush JG, Faubert PF (1990) Renal medullary circulation: hormonal control. Kidney Int 37:1–13

    Article  PubMed  CAS  Google Scholar 

  11. Brezis M, Rosen S (1995) Hypoxia of the renal medulla – its implications for disease. N Engl J Med 332:647–655

    Article  PubMed  CAS  Google Scholar 

  12. Aukland K, Johannesen J, Kiil F ( 1969) In vivo measurements of local metabolic rate in the dog kidney. Effect of mersalyl, chlorothiazide, ethacrynic acid and furosemide. Scand J Clin Lab Invest 23:317–330

    Article  PubMed  Google Scholar 

  13. Kramer HJ, Schuurmann J, Wassermann C, Dusing R (1980) Prostaglandin-independent protection by furosemide from oliguric ischaemic renal failure in conscious rats. Kidney Int 17:455–464

    Article  PubMed  CAS  Google Scholar 

  14. Bayati A, Nygren K, Kallskog O, Wolgast M (1990) The effect of loop diuretics on the long-term outcome of post-ischaemic acute renal failure in the rat. Acta Physiol Scand 139:271–279

    Article  PubMed  CAS  Google Scholar 

  15. Shilliday I, Allison ME (1994) Diuretics in acute renal failure. Ren Fail 16:3–17

    Article  PubMed  CAS  Google Scholar 

  16. Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94:3271–3275

    Article  PubMed  CAS  Google Scholar 

  17. Cupples WA, Braam B (2007) Assessment of renal autoregulation. Am J Physiol Renal Physiol 292:F1105–F11223

    Article  PubMed  CAS  Google Scholar 

  18. Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M (2000) Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol 11:97–104

    PubMed  CAS  Google Scholar 

  19. Jones D, Bellomo R (2005) Renal-dose dopamine: from hypothesis to paradigm to dogma to myth and, finally, superstition? J Intensive Care Med 20:199–211

    Article  PubMed  Google Scholar 

  20. Marik PE (2002) Low-dose dopamine: a systematic review. Intensive Care Med 28:877–883

    Article  PubMed  CAS  Google Scholar 

  21. Woo EB, Tang AT, el-Gamel A et al (2002) Dopamine therapy for patients at risk of renal dysfunction following cardiac surgery: science or fiction? Eur J Cardiothorac Surg 22:106–111

    Article  PubMed  Google Scholar 

  22. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J (2000) Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 356:2139–2143

    Article  PubMed  CAS  Google Scholar 

  23. Redfors B, Bragadottir G, Sellgren J, Swärd K, Ricksten SE (2010) Dopamine increases renal oxygenation: a clinical study in post-cardiac surgery patients. Acta Anaesthesiol Scand 54:183–190

    Article  PubMed  CAS  Google Scholar 

  24. Edwards RM (1986) Comparison of the effects of fenoldopam, SK & F R-87516 and dopamine on renal arterioles in vitro. Eur J Pharmacol 126:167–170

    Article  PubMed  CAS  Google Scholar 

  25. Mathur VS, Swan SK, Anjum S, Lambrecht LJ et al (1999) The effects of fenoldopam, a selective dopamine receptor agonist, on systemic and renal hemodynamics in normotensive subjects. Crit Care Med 27:1832–1837

    Article  PubMed  CAS  Google Scholar 

  26. Halpenny M, Rushe C, Breen P, Cunningham AJ, Boucher-Hayes D, Shorten GD (2002) The effects of fenoldopam on renal function in patients undergoing elective aortic surgery. Eur J Anaesthesiol 19:32–39

    PubMed  CAS  Google Scholar 

  27. Cogliati AA, Vellutini R, Nardini A et al (2007) Fenoldopam infusion for renal protection in high-risk cardiac surgery patients: a randomized clinical study. J Cardiothorac Vasc Anesth 21:847–850

    Article  PubMed  CAS  Google Scholar 

  28. Bove T, Landoni G, Calabrò MG et al (2005) Renoprotective action of fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation 111:3230–3235

    Article  PubMed  CAS  Google Scholar 

  29. Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT (1998) Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med 128:194–203

    PubMed  CAS  Google Scholar 

  30. Englberger L, Suri RM, Li Z, et al (2011) Clinical accuracy of RIFLE and Acute Kidney Injury Network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery. Crit Care 15:R16

    Article  PubMed  Google Scholar 

  31. Lassnigg A, Schmidlin D, Mouhieddine M et al (2004) Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol 15:1597–1605

    Article  PubMed  CAS  Google Scholar 

  32. Kanji HD, Schulze CJ, Hervas-Malo M et al (2010) Difference between pre-operative and cardiopulmonary bypass mean arterial pressure is independently associated with early cardiac surgery-associated acute kidney injury. J Cardiothorac Surg 5:71

    Article  PubMed  Google Scholar 

  33. Thurau K, Boylan JW (1976) Acute renal success. The unexpected logic of oliguria in acute renal failure. Am J Med 61:308–315

    Article  PubMed  CAS  Google Scholar 

  34. Rosenberger C, Rosen S, Heyman SN (2006) Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury. Clin Exp Pharmacol Physiol 33:980–988

    Google Scholar 

  35. Molitoris BA, Falk SA, Dahl RH (1989) Ischemia-induced loss of epithelial polarity. Role of the tight junction. J Clin Invest 84:1334–1339

    Article  PubMed  CAS  Google Scholar 

  36. Molitoris BA (1993) Na(+)-K(+)-ATPase that redistributes to apical membrane during ATP depletion remains functional. Am J Physiol 265:F693–697

    PubMed  CAS  Google Scholar 

  37. Laycock SK, Vogel T, Forfia PR et al (1998) Role of nitric oxide in the control of renal oxygen consumption and the regulation of chemical work in the kidney. Circ Res 82:1263–1271

    Article  PubMed  CAS  Google Scholar 

  38. Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AH (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 345:50–54

    Article  PubMed  CAS  Google Scholar 

  39. Valsson F, Ricksten SE, Hedner T, Lundin S (1996) Effects of atrial natriuretic peptide on acute renal impairment in patients with heart failure after cardiac surgery. Intensive Care Med 22:230–236

    Article  PubMed  CAS  Google Scholar 

  40. Sward K, Valsson F, Odencrants P, Samuelsson O, Ricksten SE (2004) Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo-controlled trial. Crit Care Med 32:1310–1315

    Article  PubMed  Google Scholar 

  41. Burke TJ, Cronin RE, Duchin KL, Peterson LN, Schrier RW (1980) Ischemia and tubule obstruction during acute renal failure in dogs: mannitol in protection. Am J Physiol 238:F305–F314

    PubMed  CAS  Google Scholar 

  42. Valdes ME, Landau SE, Shah DM et al (1979) Increased glomerular filtration rate following mannitol administration in man. J Surg Res 26:473–477

    Article  PubMed  CAS  Google Scholar 

  43. Molitoris BA, Sandoval R, Sutton TA (2002) Endothelial injury and dysfunction in ischemic acute renal failure. Crit Care Med 30:S235–S240

    Article  PubMed  Google Scholar 

  44. Bragadottir G, Redfors B, Ricksten SE (2012) Mannitol increases renal blood flow and maintains filtration fraction and oxygenation in postoperative acute kidney injury – a prospective interventional study. Crit Care 16:R159

    Article  PubMed  Google Scholar 

  45. Kristof AS, Magder S (1999) Low systemic vascular resistance in patients undergoing cardiopulmonary bypass. Crit Care Med 27:1121–1127

    Article  PubMed  CAS  Google Scholar 

  46. Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock. Intensive Care Med 34:17–60

    Article  PubMed  Google Scholar 

  47. Redfors B, Bragadottir G, Sellgren J, Sward K, Ricksten SE (2011) Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med 37:60–67

    Article  PubMed  CAS  Google Scholar 

  48. Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345:588–595

    Article  PubMed  CAS  Google Scholar 

  49. Landry DW, Levin HR, Gallant EM et al (1997) Vasopressin pressor hypersensitivity in vasodilatory septic shock. Crit Care Med 25:1279–1282

    Article  PubMed  CAS  Google Scholar 

  50. Patel BM, Chittock DR, Russell JA, Walley KR (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96:576–582

    Article  PubMed  CAS  Google Scholar 

  51. ter Wee PM, Smit AJ, Rosman JB, Sluiter WJ, Donker AJ (1986) Effect of intravenous infusion of low-dose dopamine on renal function in normal individuals and in patients with renal disease. Am J Nephrol 6:42–46

    Google Scholar 

  52. Schoors DF, Dupont AG (1990) Further studies on the mechanism of the natriuretic response to low-dose dopamine in man: effect on lithium clearance and nephrogenic cAMP formation. Eur J Clin Invest 20:385–391

    Google Scholar 

  53. Olsen NV, Lund J, Jensen PF et al (1993) Dopamine, dobutamine, and dopexamine. A comparison of renal effects in unanesthetized human volunteers. Anesthesiology 79:685-594

    Google Scholar 

  54. Olsen NV, Hansen JM, Kanstrup IL, Richalet JP, Leyssac PP (1993) Renal hemodynamics, tubular function, and response to low-dose dopamine during acute hypoxia in humans. J Appl Physiol 74:2166–2173

    Google Scholar 

  55. Olsen NV, Lang-Jensen T, Hansen JM et al (1994) Effects of acute beta-adrenoceptor blockade with metoprolol on the renal response to dopamine in normal humans. Br J Clin Pharmacol 37:347–353

    Google Scholar 

  56. Richer M, Robert S, Lebel M (1996) Renal hemodynamics during norepinephrine and low-dose dopamine infusions in man. Crit Care Med 24:1150–1156

    Google Scholar 

  57. Mc Donald RH, Goldberg LI, McNay JL, Tuttle EP (1964) Effect of dopamine in man: Augmentation of sodium excretion, glomerular filtration rate and renal plasma flow. J Clin Invest 43:1116–1124

    Google Scholar 

  58. Rosenblum R, Tai AR, Lawson D (1972) Dopamine in man: cardiorenal hemodynamics in normotensive patients with heart disease. J Pharmacol Exp Ther 183:256–263

    Google Scholar 

  59. Schwartz LB, Bissell MG, Murphy M, Gewertz BL (1988) Renal effects of dopamine in vascular surgical patients. J Vasc Surg 8:367–374

    Google Scholar 

  60. Graves TA, Cioffi WG, Vaughan GM et al (1993) The renal effects of low-dose dopamine in thermally injured patients. J Trauma 35:97–102

    Google Scholar 

  61. Ungar A, Fumagalli S, Marini M et al (2004) Renal, but not systemic, hemodynamic effects of dopamine are influenced by the severity of congestive heart failure. Crit Care Med 32:1125–1129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-E. Ricksten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg and BioMed Central Ltd.

About this chapter

Cite this chapter

Ricksten, SE., Bragadottir, ., Redfors, B. (2013). Renal Oxygenation in Clinical Acute Kidney Injury. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics