Skip to main content

Cerebral Oximetry in Cerebral Resuscitation After Cardiac Arrest

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2013

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2734 Accesses

Abstract

Interestingly, despite great medical progress over the past 50 years, survival from cardiac arrest has improved only slightly [1, 2] and long-term neurological, cognitive and functional deficits are common [3]. Pathophysiologically, cardiac arrest represents a state of generalized whole-body ischemia resulting from either a noflow or a low-flow state that culminates in inadequate organ perfusion and oxygen delivery (DO2) leading to cellular damage and death [1]. On-going inflammatory responses and cellular damage continue even after return of spontaneous circulation (ROSC), and are confounded by the problem of ischemia-reperfusion injury [1]. As a result of this unique pathological state, first termed “post resuscitation disease” in 1972 [4], even though spontaneous circulation may initially be restored in up to 50 %, many of the early survivors die in the subsequent hours to days because of a combination of neurological dysfunction, cardiac dysfunction, ischemia- reperfusion injury and persistent inflammatory responses [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neumar RW, Nolan JP, Adrie C et al (2008) Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 118:2452–2483

    Article  PubMed  Google Scholar 

  2. Kudenchuk PJ, Redshaw JD, Stubbs BA et al (2012) Impact of changes in resuscitation practice on survival and neurological outcome after out-of-hospital cardiac arrest resulting from nonshockable arrhythmias. Circulation 125:1787–1794

    Article  PubMed  Google Scholar 

  3. Mateen FJ, Josephs KA, Trenerry MR et al (2011) Long-term cognitive outcomes following out-of-hospital cardiac arrest. Neurology 77:1438–1445

    Article  PubMed  CAS  Google Scholar 

  4. Negovsky VA (1972) The second step in resuscitation: the treatment of the “post-resuscitation disease.”. Resuscitation 1:1–7

    Article  PubMed  CAS  Google Scholar 

  5. Heradstveit BE, Sunde K, Sunde GA, Wentzel-Larsen T, Heltne JK (2012) Factors complicating interpretation of capnography during advanced life support in cardiac arrest – a clinical retrospective study in 575 patients. Resuscitation 83:813–818

    Article  PubMed  Google Scholar 

  6. de Vries JW, Bakker PF, Visser GH, Diephuis JC, van Huffelen AC (1998) Changes in cerebral oxygen uptake and cerebral electrical activity during defibrillation threshold testing. Anesth Analg 87:16–20

    PubMed  Google Scholar 

  7. Fatovich D, Jacobs I, Celenza A, Paech M (2006) An observational study of bispectral index monitoring for out of hospital cardiac arrest. Resuscitation 69:207–212

    Article  PubMed  Google Scholar 

  8. Pollard V, Prough DS (1998) Cerebral oxygenation: Near infrared spectroscopy. In: Tobin MJ (ed) Principles and Practice of Intensive Care Monitoring. McGraw-Hill Professional, New York, pp 1019–1034

    Google Scholar 

  9. Jöbsis FF (1977) Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  Google Scholar 

  10. Boulnois JL (1986) Photophysical processes in recent medical laser developments: a review. Lasers Med Sci :47–66

    Google Scholar 

  11. Tamura T, Hazeki O, Takada M, Tamura M (1985) Absorbance profile of red blood cell suspension in vitro and in situ. Adv Exp Med Biol 191:211–217

    Article  Google Scholar 

  12. Pollard V, Prough DS, DeMelo AE et al (1996) Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo. Anesth Analg 82:269–277

    PubMed  CAS  Google Scholar 

  13. McCormick PW, Stewart M, Ray P et al (1991) Measurement of regional cerebrovascular hemoglobin oxygen saturation in cats using optical spectroscopy. Neurol Res 13:65–70

    PubMed  CAS  Google Scholar 

  14. Fuchs G, Schwarz G, Kulier A, Litscher G (2000) The influence of positioning on spectroscopic measurements of brain oxygenation. J Neurosurg Anesthesiol 12:75–80

    Article  PubMed  CAS  Google Scholar 

  15. Pollard V, Prough DS, DeMelo AE et al (1996) The influence of carbon dioxide and body position on near-infrared spectroscopic assessment of cerebral hemoglobin oxygen saturation. Anesth Analg 82:278–287

    PubMed  CAS  Google Scholar 

  16. Kishi K, Kawaguchi M, Yoshitani K, Nagahata T, Furuya H (2003) Influence of patient variables and sensor location on regional cerebral oxygen saturation measured by INVOS 4100 near-infrared spectrophotometers. J Neurosurg Anesthesiol 15:302–306

    Article  PubMed  Google Scholar 

  17. Newman DH, Callaway CW, Greenwald IB, Freed J (2004) Cerebral oximetry in out-of-hospital cardiac arrest: standard CPR rarely provides detectable hemoglobin-oxygen saturation to the frontal cortex. Resuscitation 63:189–194

    Article  PubMed  Google Scholar 

  18. Müllner M, Sterz F, Binder M, Hirschl MM, Janata K, Laggner AN (1995) Near infrared spectroscopy during and after cardiac arrest – preliminary results. Clin Intensive Care 6:107–111

    PubMed  Google Scholar 

  19. Claus JJ, Breteler MMB, Hasan D et al (1998) Regional cerebral blood flow and cerebrovascular risk factors in the elderly population. Neurobiol Aging 19:57–64

    Article  PubMed  CAS  Google Scholar 

  20. Wassenaar EB, Van den Brand JGH (2005) Reliability of near-infrared spectroscopy in people with dark skin pigmentation. J Clin Monit Comput 19:195–199

    Article  PubMed  CAS  Google Scholar 

  21. Madsen PL, Skak C, Rasmussen A, Secher NH (2000) Interference of cerebral near-infrared oximetry in patients with icterus. Anesth Analg 90:489–493

    PubMed  CAS  Google Scholar 

  22. Song JG, Jeong SM, Shin WJ et al (2011) Laboratory variables associated with low near-infrared cerebral oxygen saturation in icteric patients before liver transplantation surgery. Anesth Analg 112:1347–1352

    Article  PubMed  CAS  Google Scholar 

  23. Akiyama T, Yamauchi Y (1994) Use of near infrared reflectance spectroscopy in the screening for biliary atresia. J Pediatr Surg 29:645–647

    Article  PubMed  CAS  Google Scholar 

  24. Samra SK, Stanley JC, Zelenock GB, Dorje P (1999) An assessment of contributions made by extracranial tissues during cerebral oximetry. J Neurosurg Anesthesiol 11:1–5

    Article  PubMed  CAS  Google Scholar 

  25. Germon TJ, Kane NM, Manara AR, Nelson RJ (1994) Near-infrared spectroscopy in adults: effects of extracranial ischaemia and intracranial hypoxia on estimation of cerebral oxygenation. Br J Anaesth 73:503–506

    Article  PubMed  CAS  Google Scholar 

  26. Schwarz G, Litscher G, Kleinert R, Jobstmann R (1996) Cerebral oximetry in dead subjects. J Neurosurg Anesthesiol 8:189–193

    Article  PubMed  CAS  Google Scholar 

  27. Rivers EP (1992) Venous hyperoxia after cardiac arrest. Chest 102:1787–1793

    Article  PubMed  CAS  Google Scholar 

  28. Gupta AK, Menon DK, Czosnyka M, Smielewski P, Jones JG (1997) Thresholds for hypoxic cerebral vasodilation in volunteers. Anesth Analg 85:817–820

    PubMed  CAS  Google Scholar 

  29. Harper AM, Glass HI (1965) Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial pressures. J Neurol Neurosurg Psychiat 28:449–452

    Article  PubMed  CAS  Google Scholar 

  30. Smielewski P, Kirkpatrick P, Minhas P, Pickard JD, Czosnyka M (1995) Can cerebrovascular reactivity be measured with NIRS? Stroke 26:2285–2292

    Article  PubMed  CAS  Google Scholar 

  31. Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick P (1997) Clinical evaluation of near-infrared spectroscopy for testing cerebrovascular reactivity in patients with carotid artery disease. Stroke 28:331–338

    Article  PubMed  CAS  Google Scholar 

  32. Henson LC, Calalang C, Temp JA, Ward DS (1998) Accuracy of a cerebral oximeter in healthy volunteers under conditions of isocapnic hypoxia. Anesthesiology 88:58–65

    Article  PubMed  CAS  Google Scholar 

  33. Baraka AS, Nawfal M, El-Khatib M, Haroun-Bizri S (2005) Regional cerebral oximetry after oxygen administration. Br J Anaesth 95:720

    Article  PubMed  CAS  Google Scholar 

  34. Paquet C, Deschamps A, Denault AY et al (2008) Baseline regional cerebral oxygen saturation correlates with left ventricular systolic and diastolic function. J Cardiothorac Vasc Anesth 22:840–846

    Article  PubMed  Google Scholar 

  35. Madsen PL, Nielsen HB, Christiansen P (2000) Well-being and cerebral oxygen saturation during acute heart failure in humans. Clin Physiol 20:158–164

    Article  PubMed  CAS  Google Scholar 

  36. Koike A, Itoh H, Oohara R et al (2004) Cerebral oxygenation during exercise in cardiac patients. Chest 125:182–190

    Article  PubMed  Google Scholar 

  37. Polderman KH (2009) Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med 37:S186–S202

    Article  PubMed  Google Scholar 

  38. Rubio A, Hakami L, Münch F et al (2008) Noninvasive control of adequate cerebral oxygenation during low-flow antegrade selective cerebral perfusion on adults and infants in the aortic arch surgery. J Card Surg 23:474–479

    Article  PubMed  Google Scholar 

  39. Leyvi G, Bello R, Wasnick JD, Plestis K (2006) Assessment of cerebral oxygen balance during deep hypothermic circulatory arrest by continuous jugular bulb venous saturation and near-infrared spectroscopy. J Cardiothorac Vasc Anesth 20:826–833

    Article  PubMed  Google Scholar 

  40. Kadoi Y, Kawahara F, Saito S et al (1999) Effects of hypothermic and normothermic cardiopulmonary bypass on brain oxygenation. Ann Thorac Surg 68:34–39

    Article  PubMed  CAS  Google Scholar 

  41. Tobias JD (2006) Cerebral oxygenation monitoring: near-infrared spectroscopy. Expert Rev Med Dev 3:235–243

    Article  Google Scholar 

  42. Shojima M, Watanabe E, Mayanagi Y (2004) Cerebral blood oxygenation after cerebrospinal fluid removal in hydrocephalus measured by near-infrared spectroscopy. Surg Neurol 62:312–318

    Article  PubMed  Google Scholar 

  43. Gracias VH, Guillamondegui OD, Stiefel MF et al (2004) Cerebral cortical oxygenation: A pilot study. J Trauma 56:469–472

    Article  PubMed  Google Scholar 

  44. Vernieri F, Tibuzzi F, Pasqualetti P et al (2004) Transcranial doppler and near-infrared spectroscopy can evaluate the hemodynamic effect of carotid artery occlusion. Stroke 35:64–70

    Article  PubMed  Google Scholar 

  45. Kurth CD, Steven JL, Montenegro LM et al (2001) Cerebral oxygen saturation before congenital heart surgery. Ann Thorac Surg 72:187–192

    Article  PubMed  CAS  Google Scholar 

  46. Ito N, Nanto S, Nagao K, Hatanaka T, Kai T (2010) Regional cerebral oxygen saturation predicts poor neurological outcome in patients with out-of-hospital cardiac arrest. Resuscitation 81:1736–1737

    Article  PubMed  Google Scholar 

  47. Ito N, Shinsuke N, Nagao K, Hatanaka T, Nishiyama K, Tatsuro K (2012) Regional cerebral oxygen saturation on hospital arrival is a potential novel predictor of neurological outcomes at hospital discharge in patients with out-of-hospital cardiac arrest. Resuscitation 83:46–50

    Article  PubMed  Google Scholar 

  48. Paarmann H, Heringlake M, Sier H, Schön J (2010) The association of non-invasive cerebral and mixed venous oxygen saturation during cardiopulmonary resuscitation. Interact Cardiovasc Thorac Surg 11:371–373

    Article  PubMed  Google Scholar 

  49. Mayr NP, Martin K, Kurz J, Tassani P (2011) Monitoring of cerebral oxygen saturation during closed-chest and open-chest CPR. Resuscitation 82:635–636

    Article  PubMed  Google Scholar 

  50. Parnia S, Nasir A, Shah C, Patel R, Mani A, Richman P (2012) A feasibility study evaluating the role of cerebral oximetry in predicting return of spontaneous circulation in cardiac arrest. Resuscitation 83:982–985

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nolan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahn, A., Nolan, J., Parnia, S. (2013). Cerebral Oximetry in Cerebral Resuscitation After Cardiac Arrest. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics