Skip to main content

Stochastic Series Expansion Quantum Monte Carlo

  • Chapter
  • First Online:
Strongly Correlated Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 176))

Abstract

This chapter outlines the fundamental construction of the Stochastic Series Expansion, a highly efficient and easily implementable quantum Monte Carlo method for quantum lattice models. Originally devised as a finite-temperature simulation based on a Taylor expansion of the partition function, the method has recently been recast in the formalism of a zero-temperature projector method, where a large power of the Hamiltonian is applied to a trial wavefunction to project out the groundstate. Although these two methods appear formally quite different, their implementation via non-local loop or cluster algorithms reveals their underlying fundamental similarity. Here, we briefly review the finite- and zero-temperature formalisms, and discuss concrete manifestations of the algorithm for the spin 1/2 Heisenberg and transverse field Ising models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    or alternatively, Sandvik’s Simple and Efficient QMC.

  2. 2.

    and, of course, the infamous “sign problem”.

  3. 3.

    Alternatively, with the imaginary-time evolution operator \(e^{-\beta H}\), where \(\beta \) is large. The two methods are essentially equivalent however, since the exponential can be Taylor expanded.

  4. 4.

    A generalization of this basis rotation on non-bipartite lattices would amount to a solution to the aforementioned “sign-problem”—and likely a Nobel prize for its architect.

References

  1. D.C. Handscomb, Proc. Cambridge Philos. Soc. 58, 594 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. A.W. Sandvik, J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991)

    Article  ADS  Google Scholar 

  3. A.W. Sandvik, J. Phys. A 25, 3667 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  4. A.W. Sandvik, Phys. Rev. B 56, 11678 (1997)

    Article  ADS  Google Scholar 

  5. A.W. Sandvik, Phys. Rev. Lett. 95, 207203 (2005)

    Article  ADS  Google Scholar 

  6. K.S.D. Beach, A.W. Sandvik, Nucl. Phys. B 750, 142 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. P. Henelius, P. Fröbrich, P.J. Kuntz, C. Timm, P.J. Jensen, Phys. Rev. B 66, 094407 (2002)

    Article  ADS  Google Scholar 

  8. R.G. Melko, J. Phys. Condens. Matter 19, 145203 (2007)

    Google Scholar 

  9. A.W. Sandvik, Phys. Rev. E 68, 056701 (2003)

    Article  ADS  Google Scholar 

  10. S. Wessel, F. Alet, M. Troyer, G.G. Batrouni, Phys. Rev. A 70, 053615 (2004)

    Article  ADS  Google Scholar 

  11. S. Wessel, F. Alet, S. Trebst, D. Leumann, M. Troyer, G.G. Batrouni, J. Phys. Soc. Jpn. Suppl. 74, 10 (2005)

    Article  Google Scholar 

  12. P. Pippan, H.G. Evertz, M. Hohenadler, Phys. Rev. A 80, 033612 (2009)

    Article  ADS  Google Scholar 

  13. K. Harada, N. Kawashima, M. Troyer, Phys. Rev. Lett. 90(11), 117203 (2003)

    Article  ADS  Google Scholar 

  14. N. Kawashima, Y. Tanabe, Phys. Rev. Lett. 98, 057202 (2007)

    Article  ADS  Google Scholar 

  15. R.K. Kaul, A.W. Sandvik, Phys. Rev. Lett. 108, 137201 (2012)

    Article  ADS  Google Scholar 

  16. R.K. Kaul, R.G. Melko, A.W. Sandvik, arXiv:1204.5405 (2012)

    Google Scholar 

  17. A.W. Sandvik, Phys. Rev. Lett. 104, 177201 (2010)

    Article  ADS  Google Scholar 

  18. J.S. Liu, Monte Carlo Strategies in Scientific Computing (Springer, Berlin, 2008)

    Google Scholar 

  19. F.F. Assaad, H.G. Evertz, in Computational Many-Particle Physics (Lect. Notes Phys. 739), ed. by H. Fehske, R. Schneider, A. Weisse (Springer, Berlin, 2007), pp. 277–356

    Google Scholar 

  20. P. Henelius, A.W. Sandvik, Phys. Rev. B 62, 1102 (2000)

    Article  ADS  Google Scholar 

  21. N. Kawashima, K. Harada, J. Phys. Soc. Jpn. 73, 1379 (2004)

    Article  ADS  MATH  Google Scholar 

  22. H.G. Evertz, G. Lana, M. Marcu, Phys. Rev. Lett. 70, 875 (1993)

    Article  ADS  Google Scholar 

  23. A.W. Sandvik, Phys. Rev. B 59, R14157 (1999)

    Article  ADS  Google Scholar 

  24. E.L. Pollock, D.M. Ceperley, Phys. Rev. B 36, 8343 (1987)

    Article  ADS  Google Scholar 

  25. H. Evertz, Adv. Phys. 52, 1 (2003)

    Article  ADS  Google Scholar 

  26. O.F. Syljuåsen, A.W. Sandvik, Phys. Rev. E 66, 046701 (2002)

    Article  ADS  Google Scholar 

  27. R.G. Melko, A.W. Sandvik, Phys. Rev. E 72, 026702 (2005)

    Article  ADS  Google Scholar 

  28. R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 58, 86 (1987)

    Article  ADS  Google Scholar 

  29. N.V. Prokof’ev, B.V. Svistunov, I.S. Tupitsyn, Physics Letters A 238(4–5), 253 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. A. Dorneich, M. Troyer, Phys. Rev. E 64, 066701 (2001)

    Article  ADS  Google Scholar 

  31. S. Liang, B. Doucot, P.W. Anderson, Phys. Rev. Lett. 61, 365 (1988)

    Article  ADS  Google Scholar 

  32. A.W. Sandvik, K.S.D. Beach, in Computer Simulation Studies in Condensed-Matter Physics XX, ed. by D.P. Landau, S.P. Lewis, H.B. Schuttler (Springer, Berlin, 2008)

    Google Scholar 

  33. A.W. Sandvik, H.G. Evertz, Phys. Rev. B 82, 024407 (2010)

    Article  ADS  Google Scholar 

  34. M.B. Hastings, I. González, A.B. Kallin, R.G. Melko, Phys. Rev. Lett. 104, 157201 (2010)

    Article  ADS  Google Scholar 

  35. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  36. A.W. Sandvik, unpublished (2011)

    Google Scholar 

Download references

Acknowledgments

This work would not have been possible without the continuing collaboration of A. Sandvik, who is proprietor of almost every algorithmic advance outlined in the Chapter, and without who’s willingness to communicate these ideas privately would have made this work impossible. I am also indebted to A. Kallin and S. Inglis for contributions to all sections of this chapter, especially the figures, and many critical readings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger G. Melko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melko, R.G. (2013). Stochastic Series Expansion Quantum Monte Carlo. In: Avella, A., Mancini, F. (eds) Strongly Correlated Systems. Springer Series in Solid-State Sciences, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35106-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35106-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35105-1

  • Online ISBN: 978-3-642-35106-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics