Skip to main content

The Time-Dependent Density Matrix Renormalization Group

  • Chapter
  • First Online:
Strongly Correlated Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 176))

Abstract

The time-dependent DMRG is a remarkable and highly flexible tool to simulate real-time dynamics of strongly correlated systems. It can be used to calculate spectral functions, and to study systems far from equilibrium. In this chapter we describe how to generalize the DMRG method to solve the time-dependent Schrödinger equation, in both, real, and imaginary time. We illustrate these ideas with different applications such as transport problems in nano-structures, quantum quenches, and the calculation of time-dependent correlations functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.R. Manmana, A. Muramatsu, R.M. Noack, Time evolution of one-dimensional quantum many body systems, in Contribution for the Conference Proceedings of the IX. Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors, Vietri sul Mare (Salerno, Italy), October 2004. AIP Conference Proceedings, vol. 789, p. 269 (2005)

    Google Scholar 

  2. U. Schollwöck, J. Phys. Soc. Jpn. 74(Supplement), 246 (2005)

    Google Scholar 

  3. U. Schollwöck, S.R. White, in Effective Models for Low-dimensional Strongly Correlated Systems, ed. by G.G. Batrouni, D. Poilblanc (AIP, Melville, 2006), p. 155

    Google Scholar 

  4. J.J. García-Ripoll, New J. Phys. 8, 305 (2008)

    Article  Google Scholar 

  5. A.E. Feiguin, in Proceedings of the XV. Training Course in the Physics of Correlated Electron Systems, Vietri sul Mare (Salerno, Italy), October 2010. AIP Conference Proceeding, vol. 1419, p. 5 (2011)

    Google Scholar 

  6. M.A. Cazalilla, J.B. Marston, Phys. Rev. Lett. 88, 256403 (2002)

    Article  ADS  Google Scholar 

  7. M.A. Cazalilla, J.B. Marston, Phys. Rev. Lett. 91, 049702 (2003)

    Article  ADS  Google Scholar 

  8. H.G. Luo, T. Xiang, X.Q. Wang, Phys. Rev. Lett. 91, 049701 (2003)

    Article  ADS  Google Scholar 

  9. H.G. Luo, T. Xiang, X.Q. Wang, Phys. Rev. Lett. 93, 207204 (2004)

    Article  Google Scholar 

  10. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  11. G. Vidal, Phys. Rev. Lett. 93, 040502 (2004)

    Article  ADS  Google Scholar 

  12. S.R. White, A.E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004)

    Article  ADS  Google Scholar 

  13. A.J. Daley, C. Kollath, U. Schollwöck, G. Vidal, J. Stat. Mech.: Theor. Exp. P04005 (2004)

    Google Scholar 

  14. E. Forest, R.D. Ruth, Physica D 43, 105 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. I.P. Omelyan, I.M. Mryglod, R. Folk, Comput. Phys. Commun. 146, 188 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A.E. Feiguin, S.R. White, Phys. Rev. B 72, 20404 (2005)

    Google Scholar 

  17. A.E. Feiguin, S.R. White, Phys. Rev. B 72, 20401 (2005)

    Google Scholar 

  18. F. Verstraete, J.J. Garcia-Ripoll, J.I. Cirac, Phys. Rev. Lett. 93, 207204 (2004)

    Article  ADS  Google Scholar 

  19. M. Zwolak, G. Vidal, Phys. Rev. Lett. 93, 207205 (2004)

    Article  ADS  Google Scholar 

  20. M. Suzuki, J. Phys. Soc. Jpn. 12, 4483 (1985) and references therein

    Google Scholar 

  21. S.M. Barnett, P.L. Knight, Phys. Rev. A 38, 1657 (1988)

    Article  ADS  Google Scholar 

  22. S.M. Barnett, P.L. Knight, J. Opt. Soc. Am. B 2 467 (1985)

    Google Scholar 

  23. F. Heidrich-Meisner, S.R. Manmana, M. Rigol, A. Muramatsu, A.E. Feiguin, E. Dagotto, Phys. Rev. A 80, R041603 (2009)

    Article  ADS  Google Scholar 

  24. F. Heidrich-Meisner, M. Rigol, A. Muramatsu, A.E. Feiguin, E. Dagotto, Phys. Rev. A 78, 013620 (2008)

    Article  ADS  Google Scholar 

  25. K.A. Al-Hassanieh, A.E. Feiguin, J.A. Riera, C.A. Busser, E. Dagotto, Phys. Rev. B 73, 195304 (2006)

    Article  ADS  Google Scholar 

  26. L.G.G.V. Dias da Silva, F. Heidrich-Meisner, A.E. Feiguin, C.A. Busser, G.B. Martins, E.V. Anda, E. Dagotto. Phys. Rev. B 78, 195317 (2008)

    Google Scholar 

  27. A.E. Feiguin, P. Fendley, M.P.A. Fisher, C. Nayak, Phys. Rev. Lett. 101, 236801 (2008)

    Article  ADS  Google Scholar 

  28. F. Heidrich-Meisner, A.E. Feiguin, E. Dagotto, Phys. Rev. B 79, 235336 (2009)

    Article  ADS  Google Scholar 

  29. F. Heidrich-Meisner, I. Gonzalez, K.A. Al-Hassanieh, A.E. Feiguin, M.J. Rozenberg, E. Dagotto, Phys. Rev. B 82, 205110 (2010)

    Article  ADS  Google Scholar 

  30. P. Schmitteckert, Phys. Rev. B 70, 121302(R) (2004)

    Google Scholar 

  31. E. Boulat, H. Saleur, P. Schmitteckert, Phys. Rev. Lett. 101, 140601 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Bohr, P. Schmitteckert, P. Woelfle, Europhys. Lett. 73, 246 (2006)

    Article  ADS  Google Scholar 

  33. C. Kollath, U. Schollwöck, W. Zwerger, Phys. Rev. Lett. 95, 176401 (2005)

    Article  ADS  Google Scholar 

  34. Elbio Dagotto, Rev. Mod. Phys. 66, 763 (1994)

    Article  ADS  Google Scholar 

  35. J.E. Gubernatis, M. Jarrell, R.N. Silver, D.S. Sivia Phys, Rev. B 44, 6011 (1991)

    Article  Google Scholar 

  36. K. Hallberg, Phys. Rev. B 52, R9827 (1995)

    Article  ADS  Google Scholar 

  37. T.D. Kühner, S.R. White, Phys. Rev. B 60, 335 (1999)

    Article  ADS  Google Scholar 

  38. E. Jeckelmann, Phys. Rev. B 66, 045114 (2002)

    Article  ADS  Google Scholar 

  39. A.E. Feiguin, D.A. Huse, Phys. Rev. B 79, 100507 (2009)

    Article  ADS  Google Scholar 

  40. P. Bouillot, C. Kollath, A.M. Läuchli, M. Zvonarev, B. Thielemann, C. Rüegg, E. Orignac, R. Citro, M. Klanjsek, C. Berthier, M. Horvati/’c, T. Giamarchi. Phys. Rev. B 83, 054407 (2011)

    Google Scholar 

  41. A.E. Feiguin, G. Fiete, Phys. Rev. B 81, 075108 (2010)

    Article  ADS  Google Scholar 

  42. T. Barthel, U. Schollwöck, S.R. White, Phys. Rev. B 79, 245101 (2009)

    Article  ADS  Google Scholar 

  43. S.R. White, I. Affleck, Phys. Rev. B 77, 134437 (2008)

    Article  ADS  Google Scholar 

  44. P. Calabrese, J. Cardy, J. Stat, Mech. P04010, (2005), ibid. Phys. Rev. Lett. 96, 136801 (2006)

    Google Scholar 

  45. P. Calabrese, J. Cardy, J. Stat. Mech. P10004 (2007)

    Google Scholar 

  46. V. Eisler, I. Peschel, J. Stat. Mech. P06005, (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian E. Feiguin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feiguin, A.E. (2013). The Time-Dependent Density Matrix Renormalization Group. In: Avella, A., Mancini, F. (eds) Strongly Correlated Systems. Springer Series in Solid-State Sciences, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35106-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35106-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35105-1

  • Online ISBN: 978-3-642-35106-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics