Advertisement

The Adjoint Sensitivity Guidance to Diagnosis and Tuning of Error Covariance Parameters

  • Dacian N. DaescuEmail author
  • Rolf H. Langland
Chapter

Abstract

Adjoint techniques are effective tools for the analysis and optimization of the observation performance on reducing the errors in the forecasts produced by atmospheric data assimilation systems (DASs). This chapter provides a detailed exposure of the equations that allow the extension of the adjoint-DAS applications from observation sensitivity and forecast impact assessment to diagnosis and tuning of parameters in the observation and background error covariance representation. The error covariance sensitivity analysis allows the identification of those parameters of potentially large impact on the forecast error reduction and provides a first-order diagnostic to parameter specification. A proof-of-concept is presented together with comparative results of observation impact assessment and sensitivity analysis obtained with the adjoint versions of the Naval Research Laboratory Atmospheric Variational Data Assimilation System – Accelerated Representer (NAVDAS-AR) and the Navy Operational Global Atmospheric Prediction System (NOGAPS).

Keywords

Forecast Error Observation Error Data Assimilation System Background Error Background Error Covariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work of D.N. Daescu was supported by the Naval Research Laboratory Atmospheric Effects, Analysis, and Prediction BAA #75-09-01 under award N00173-10-1-G032 and by the National Science Foundation under award DMS-0914937. Support for the second author from the sponsor ONR PE-0602435N is gratefully acknowledged.

References

  1. Baker NL, Daley R (2000) Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Q J R Meteorol Soc 126:1431–1454CrossRefGoogle Scholar
  2. Baker NL, Langland RH (2009) Diagnostics for evaluating the impact of satellite observations. In Park SK, Xu L (eds) Data assimilation for atmospheric, oceanic and hydrologic applications. Springer, Berlin, pp 177–196CrossRefGoogle Scholar
  3. Bannister RN (2008a) A review of forecast error covariance statistics in atmospheric variational data assimilation. I: characteristics and measurements of forecast error covariances. Q J R Meteorol Soc 134:1951–1970CrossRefGoogle Scholar
  4. Bannister RN (2008b) A review of forecast error covariance statistics in atmospheric variational data assimilation. II: modelling the forecast error covariance statistics. Q J R Meteorol Soc 134:1971–1996CrossRefGoogle Scholar
  5. Bormann N, Bauer P (2010) Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: methods and applications to ATOVS data. Q J R Meteorol Soc 136:1036–1050CrossRefGoogle Scholar
  6. Bormann N, Collard A, Bauer P (2010) Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. II: applications to AIRS and IASI data. Q J R Meteorol Soc 136:1051–1063CrossRefGoogle Scholar
  7. Bormann N, Geer AJ, Bauer P (2011) Estimates of observation-error characteristics in clear and cloudy regions for microwave imager radiances from numerical weather prediction. Q J R Meteorol Soc 137:2014–2023.CrossRefGoogle Scholar
  8. Brousseau P, Berre L, Bouttier F, Desroziers G (2011) Flow-dependent background-error covariances for a convective-scale data assimilation system. Q J R Meteorol Soc. doi: 10.1002/qj.920Google Scholar
  9. Buehner M (2005) Ensemble-derived stationary and flow-dependent background-error covariances: evaluation in a quasi-operational NWP setting. Q J R Meteorol Soc 131:1013–1043CrossRefGoogle Scholar
  10. Buehner M, Gauthier P, Liu Z (2005) Evaluation of new estimates of background- and observation-error covariances for variational assimilation. Q J R Meteorol Soc 131:3373–3383CrossRefGoogle Scholar
  11. Cardinali C (2009) Monitoring the observation impact on the short-range forecast. Q J R Meteorol Soc 135:239–250CrossRefGoogle Scholar
  12. Cardinali C, Prates F (2011) Performance measurement with advanced diagnostic tools of all-sky microwave imager radiances in 4D-Var. Q J R Meteorol Soc 137:2038–2046CrossRefGoogle Scholar
  13. Chapnik B, Desroziers G, Rabier F, Talagrand O (2006) Diagnosis and tuning of observational error in a quasi-operational data assimilation setting. Q J R Meteorol Soc 132:543–565CrossRefGoogle Scholar
  14. Courtier P, Thépaut JN, Hollingsworth A (1994) A strategy of operational implementation of 4D-Var using an incremental approach. Q J R Meteorol Soc 120:1367–1388CrossRefGoogle Scholar
  15. Daescu DN (2008) On the sensitivity equations of four-dimensional variational (4D-Var) data assimilation. Mon Weather Rev 136:3050–3065CrossRefGoogle Scholar
  16. Daescu DN, Todling R (2009) Adjoint estimation of the variation in model functional output due to the assimilation of data. Mon Weather Rev 137:1705–1716CrossRefGoogle Scholar
  17. Daescu DN, Todling R (2010) Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters. Q J R Meteorol Soc 136:2000–2012CrossRefGoogle Scholar
  18. Dee DP, Da Silva AM (1999) Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: methodology. Mon Weather Rev 127:1822–1834CrossRefGoogle Scholar
  19. Desroziers G, Ivanov S (2001) Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Q J R Meteorol Soc 127:1433–1452CrossRefGoogle Scholar
  20. Desroziers G, Berre L, Chapnik B, Poli P (2005) Diagnosis of observation, background, and analysis-error statistics in observation space. Q J R Meteorol Soc 131:3385–3396CrossRefGoogle Scholar
  21. Desroziers G, Berre L, Chabot V, Chapnik B (2009) A posteriori diagnostics in an ensemble of perturbed analyses. Mon Weather Rev 137:3420–3436CrossRefGoogle Scholar
  22. Frehlich R (2011) The definition of ‘truth’ for numerical weather prediction error statistics. Q J R Meteorol Soc 137:84–98CrossRefGoogle Scholar
  23. Garand L, Heilliette S, Buehner M (2007) Interchannel error correlation associated with AIRS radiance observations: inference and impact in data assimilation. J Appl Meteorol 46:714–725CrossRefGoogle Scholar
  24. Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc 125:723–757CrossRefGoogle Scholar
  25. Gelaro R, Zhu Y (2009) Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus 61A:179–193Google Scholar
  26. Gelaro R, Zhu Y, Errico RM (2007) Examination of various-order adjoint-based approximations of observation impact. Meteorol Z 16:685–692CrossRefGoogle Scholar
  27. Gelaro R, Langland RH, Pellerin S, Todling R (2010) The THORPEX observation impact intercomparison experiment. Mon Weather Rev 138:4009–4025CrossRefGoogle Scholar
  28. Hogan TF, Rosmond TE (1991) The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon Weather Rev 119:1786–1815CrossRefGoogle Scholar
  29. Joiner J, Brin E, Treadon R, Derber J, Van Delst P, Da Silva A, Le Marshall J, Poli P, Atlas R, Bungato D, Cruz C (2007) Effects of data selection and error specification on the assimilation of AIRS data. Q J R Meteorol Soc 133:181–196CrossRefGoogle Scholar
  30. Kalnay, E. (2002) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Lahoz W (2010) Research satellites. In: Lahoz W, Khattatov B, Ménard R (eds) Data assimilation: making sense of observations. Springer, Heidleberg/London, pp 301–321Google Scholar
  32. Langland RH (2005) Issues in targeted observing. Q J R Meteorol Soc 131:3409–3425CrossRefGoogle Scholar
  33. Langland RH, Baker NL (2004) Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus 56A:189–201Google Scholar
  34. Li H, Kalnay E, Miyoshi T (2009) Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Q J R Meteorol Soc 135:523–533CrossRefGoogle Scholar
  35. Liu J, Kalnay E (2008) Estimating observation impact without adjoint model in an ensemble Kalman filter. Q J R Meteorol Soc 134:1327–1335CrossRefGoogle Scholar
  36. Liu J, Kalnay E, Miyoshi T, Cardinali C (2009) Analysis sensitivity calculation in an ensemble Kalman filter. Q J R Meteorol Soc 135:1842–1851CrossRefGoogle Scholar
  37. Lorenc AC (2003) Modelling of error covariances by 4D-Var data assimilation. Q J R Meteorol Soc 129:3167–3182CrossRefGoogle Scholar
  38. Lorenz EN, Emanuel KA (1998) Optimal sites for supplementary weather observations: simulation with a small model. J Atmos Sci 55:399–414CrossRefGoogle Scholar
  39. Lupu C, Gauthier P, Laroche S (2011) Evaluation of the impact of observations on analyses in 3D- and 4D-Var based on information content. Mon Weather Rev 139:726–737CrossRefGoogle Scholar
  40. Rosmond T, Xu L (2006) Development of NAVDAS-AR: non-linear formulation and outer loop tests. Tellus 58A:45–58Google Scholar
  41. Thépaut JN, Andersson E (2010) The global observing system. In Lahoz W, Khattatov B, Ménard R (eds) Data assimilation: making sense of observations. Springer, Heidleberg/London, pp 263–281Google Scholar
  42. Trémolet Y (2008) Computation of observation sensitivity and observation impact in incremental variational data assimilation. Tellus 60A:964–978Google Scholar
  43. Xu L, Rosmond T, Daley R (2005) Development of NAVDAS-AR: formulation and initial tests of the linear problem. Tellus 57A:546–559Google Scholar
  44. Zhang S, Anderson JL (2003) Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model. Tellus 55A:126–147Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Portland State UniversityPortlandUSA
  2. 2.Marine Meteorology DivisionNaval Research LaboratoryMontereyUSA

Personalised recommendations