Skip to main content

Quantifying Observation Impact for a Limited Area Atmospheric Forecast Model

  • Chapter
  • First Online:
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)

Abstract

Adjoint models calculate the first order sensitivity of a scalar output parameter to an input vector. Adjoint numerical weather prediction models have been used for a variety of sensitivity and data assimilation studies to provide a gradient for a measure of error with respect to the model’s analysis variables. Recent work has shown that the adjoint of the data assimilation system can map the gradient information in analysis space onto individual observations to provide a quantitative estimate of an observation’s influence on short-term forecast error. This chapter will review the framework of an adjoint observation impact system and some reported applications. Aspects of the framework particular to limited area atmospheric models will be the main focus of this chapter and results from a specific system will be presented. Issues discussed include: the effect of horizontal grid spacing on observation impact, the influence of lateral boundaries on forecast error, the relative importance of observations for different physical locations, and appropriate error metrics for limited area forecast models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    COAMPS®;  is a registered trademark of NRL.

References

  • Amerault C, Zou X, Doyle J (2008) Tests of an adjoint mesoscale model with explicit moist physics on the cloud scale. Mon Weather Rev 136:2120–2132. doi:10.1175/2007MWR2259.1

    Article  Google Scholar 

  • Baker N, Daley R (2000) Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Q J R Meteorol Soc 126:1431–1454

    Article  Google Scholar 

  • Cardinali C (2009) Monitoring the observation impact on the short-range forecast. Q J R Meteorol Soc 135:239–250

    Article  Google Scholar 

  • Collins W, Gandin L (1990) Comprehensive hydrostatic quality-control at the National Meteorological Center. Mon Weather Rev 118:2752–2767

    Article  Google Scholar 

  • Daescu D, Todling R (2010) Adjoint sensitivity of the model forecast to data assimilation system error covariance parameters. Q J R Meteorol Soc 136:2000–2012

    Article  Google Scholar 

  • Daley R (1991) Atmospheric data assimilation. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Daley R, Barker E (2001) The NAVDAS source book 2001. Technical report NRL/PU/7530-01-441, Naval Research Laboratory

    Google Scholar 

  • Dimet FL, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations: theroretical aspects. Tellus 38A:97–110

    Article  Google Scholar 

  • Errico R (1997) What is an adjoint model? Bull Am Meteorol Soc 78:2577–2591

    Article  Google Scholar 

  • Errico R (2007) Interpretations of an adjoint-derived observational impact measure. Tellus 59A:273–276

    Google Scholar 

  • Gandin L, Morone L, Collins W (1993) Two years of operational comprehensive hydrostatic quality-control at the National Meteorological Center. Weather Forcast 8:57–72

    Article  Google Scholar 

  • Gelaro R, Zhu Y (2009) Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus 61A:179–193

    Google Scholar 

  • Gelaro R, Zhu Y, Errico R (2007) Examination of various-order adjoint-based approximations of observation impact. Meteorol Z 16:685–692

    Article  Google Scholar 

  • Gelaro R, Langland R, Pellerin S, Todling R (2010) The THORPEX observation impact intercomparison experiment. Mon Weather Rev 138:4009–4025. doi:10.1175/2010MWR3393.1

    Article  Google Scholar 

  • Hodur R (1997) The Naval Research Laboratory’s coupled ocean/atmosphere mesoscale prediction system (COAMPS). Mon Weather Rev 125:1414–1430. doi:10.1175/1520-0493(1997)125 < 1414:TNRLSC > 2.0.CO;2

    Google Scholar 

  • Langland R (2005) Observation impact during the North Atlantic TReC-2003. Mon Weather Rev 133:2297–2309

    Article  Google Scholar 

  • Langland R, Baker N (2004) Estimation of observation impact using the NRL atmospheric variational data assimilation system. Tellus 56A:189–201

    Google Scholar 

  • Liu J, Kalnay E (2008) Estimating observation impact with adjoint model in an ensemble Kalman filter. Q J R Meteorol Soc 134:1327–1335

    Article  Google Scholar 

  • Moore A, Arango H, Broquet G, Edwards C, Veneziani M, Powell B, Foley D, Doyle J, Costa D, Robinson P (2011) The regional ocean modeling system (ROMS) 4-dimensional variational data assimilation systems Part iii – Observation impact and observation sensitivity in the California Current System. Prog Oceanogr 91:74–94

    Article  Google Scholar 

  • Pauley P (2003) Superobbing satellite winds for NAVDAS. Technical report NRL/MR/7530-03-8670, Naval Research Laboratory

    Google Scholar 

  • Tremolet Y (2008) Computation of observation sensitivity and observation impact in incremental variational data assimilation. Tellus 60A:964–978. doi:10.1111/j.1600–0870.2008.00349

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Office of Naval Research’s program element 0601153N. Computational resources of the Department of Defense High Performance Computing Modernization Program were vital to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark Amerault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amerault, C., Sashegyi, K., Pauley, P., Doyle, J. (2013). Quantifying Observation Impact for a Limited Area Atmospheric Forecast Model. In: Park, S., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35088-7_6

Download citation

Publish with us

Policies and ethics