Skip to main content

Markov Chain Monte Carlo Methods: Theory and Applications

  • Chapter
  • First Online:

Abstract

Markov chain Monte Carlo algorithms constitute flexible and powerful solutions to Bayesian inverse problems. They return a sample of the unapproximated posterior probability density, and make no assumptions as to linearity or the form of the prior or likelihood. MCMC algorithms are in principle easy to construct, however, they can prove difficult to implement in practice. This chapter describes the theory that underlies MCMC simulation, provides guidance for its practical implementation, and presents examples of applications of MCMC to satellite retrievals and model uncertainty characterization. Though the high dimensionality of Earth system datasets and the complexity of atmospheric, oceanic, and hydrologic models present significant challenges, continued advances in theory and practice are making application of MCMC algorithms increasingly feasible.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baum BA, Heymsfield AJ, Yang P, Bedka ST (2005) Bulk scattering properties for the remote sensing of ice clouds: part I: microphysical data and models. J Appl Meteorol 44:1885–1895

    Article  Google Scholar 

  • Bennett A (1992) Inverse methods in physical oceanography. Cambridge University Press, Cambridge/New York, p 346

    Book  Google Scholar 

  • Berner J, Ha S-Y, Hacker JP, Fournier A, Snyder C (2011) Model uncertainty in a mesoscale ensemble prediction system: stochastic versus multiphysics representations. Mon Weather Rev 139:1972–1995

    Article  Google Scholar 

  • Bishop CH, Etherton BJ, Majumdar SJ (2001) Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects. Mon Weather Rev 129:420–436

    Article  Google Scholar 

  • Cooper SJ, L’Ecuyer TS, Stephens GL (2003) The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances. J Geophys Res 108. doi:10.1029/2002JD002611

    Google Scholar 

  • Cooper S, L’Ecuyer T, Gabriel P, Baran KAJ, Stephens G (2006) Objective assessment of the information content of visible and infrared radiance measurements for cloud microphysical property retrievals over the global oceans. Part 2: ice clouds. J Appl Meteorol 45:42–62

    Article  Google Scholar 

  • Cooper SJ, L’Ecuyer TS, Gabriel P, Baran AJ, Stephens GL (2007) Performance assessment of a five-channel estimation-based ice cloud retrieval scheme for use over the global oceans. J Geophys Res 112:D04207. doi:10.1029/2006JD007122

    Article  Google Scholar 

  • Courtier P (1997) Dual formulation of four-dimensional variational assimilation. Q J R Meteorol Soc 123:2449–2461

    Article  Google Scholar 

  • Delle Monache L et al (2008) Bayesian inference and Markov chain Monte Carlo sampling to reconstruct a contaminant source on a continental scale. J Appl Meteorol climatol 47:2600–2613

    Article  Google Scholar 

  • Evensen G (2006) Data assimilation: the ensemble Kalman filter. Springer, New York, p 279

    Google Scholar 

  • Flegal JM, Haran M, Jones GL (2008) Markov chain Monte Carlo: can we trust the third significant figure? Stat Sci 23:250–260

    Article  Google Scholar 

  • Gelb A (1974) Applied optimal estimation. The Analytic Science Corporation/MIT, Cambridge, p 374

    Google Scholar 

  • Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85:398–409

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman and Hall/CRC, New York

    Google Scholar 

  • Gelman A, Brooks S, Jones G, Meng XL (2011) Handbook of Markov chain Monte Carlo: methods and applications. Chapman and Hall/CRC, New York

    Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  Google Scholar 

  • Geyer CJ (2011) Introduction to Markov chain Monte Carlo. In: Brooks S, Gelman A, Jones GL, Meng XL (eds) Handbook of Markov chain Monte Carlo. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Geyer CJ, Thompson EA (1995) Annealing Markov chain Monte Carlo with applications to ancestral inference. J Am Stat Assoc 90:909–920

    Article  Google Scholar 

  • Gilmore MS, Straka JM, Rasmussen EN (2004) Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon Weather Rev 132:2610–2627

    Article  Google Scholar 

  • Grabowski WW, Wu X, Moncrieff MW (1999) Cloud-resolving modeling of tropical cloud systems during phase III of GATE. Part III: effects of cloud microphysics. J Atmos Sci 56:2384–2402

    Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732

    Article  Google Scholar 

  • Haario H, Saksman E, Tamminen J (1999) Adaptive proposal distribution for random walk Metropolis algorithm. Comput Stat 14:375–395

    Article  Google Scholar 

  • Haario H, Saksman E, Tamminen J (2001) An adaptive Metropolis algorithm. Bernoulli 7:223–242

    Article  Google Scholar 

  • Haario H, Laine M, Mira A, Saksman E (2006) DRAM: efficient adaptive MCMC. Stat Comput 16:339–354

    Article  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Heidinger A, O’Dell CW, Greenwald T, Bennartz R (2006) The successive-order-of-interaction radiative transfer model. Part I: model development. J Appl Meteorol Climatol 45:1388–1402

    Article  Google Scholar 

  • Heymsfield AJ, Bansemer A, Field PR, Durden SL, Smith JL, Dye JE, Hall W, Grainger CA (2002) Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: results from in situ observations in TRMM field campaigns. J Atmos Sci 59:3457–3491

    Article  Google Scholar 

  • Hong G, Yang P, Huang H-L, Baum BA, Hu Y, Platnick S (2007) The sensitivity of ice cloud optical and microphysical passive satellite retrievals to cloud geometrical thickness. IEEE Trans Geosci Remote Sens 45:1315–1323

    Article  Google Scholar 

  • Inoue T (1985) On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bispectral measurements in the 10 mm window region. J Meteorol Soc Jpn 63:88–99

    Google Scholar 

  • Jarvinen H, Raisanen P, Laine M, Tamminen J, Ilin A, Oja E, Solonen A, Haario H (2010) Estimation of ECHAM5 climate model closure parameters with adaptive MCMC. Atmos Chem Phys 10:9993–10002

    Article  Google Scholar 

  • Jarvinen H, Laine M, Solonen A, Haario H (2012) Ensemble prediction and parameter estimation system: the concept. Q J R Meteorol Soc 138:281–288

    Article  Google Scholar 

  • Jazwinski H (1970) Stochastic processes and filtering theory. Mathematics in science and Engineering, vol 64. Academic, New York, pp 376

    Google Scholar 

  • Jones MC, Marron JS, Sheather SJ (1996) A brief survey of bandwidth selection for density estimation. J Am Stat Assoc 91:401–407

    Article  Google Scholar 

  • Kleespies J, van Delst P, McMillin LM, Derber J (2004) Atmospheric transmittance of an absorbing Gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model. Appl Opt 43:3103–3109

    Article  Google Scholar 

  • Laine M, Solonen A, Haario H, Jarvinen H (2012) Ensemble prediction and parameter estimation system: the method. Q J R Meteorol Soc 138:289–297

    Article  Google Scholar 

  • Lang S, Tao W-K, Cifelli R, Olson W, Halverson J, Rutledge S, Simpson J (2007) Improving simulations of convective systems from TRMM LBA: easterly and westerly regimes. J Atmos Sci 64:1141–1164

    Article  Google Scholar 

  • L’Ecuyer TS, Gabriel PM, Leesman K, Cooper SJ, Stephens GL (2006) Objective assessment of the information content of visible and infrared radiance measurements for cloud microphysical property retrievals over the global oceans. Part I: liquid clouds. J Appl Meteorol 6:20–41

    Article  Google Scholar 

  • Lin Y-L, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol 22:1065–1092

    Article  Google Scholar 

  • Locatelli JD, Hobbs PV (1974) Fall speeds and masses of solid precipitation particles. J Geophys Res 79:2185–2197

    Article  Google Scholar 

  • Lorenc AC (1986) Analysis methods for numerical weather prediction. Q J R Meteorol Soc 112:1177–1194

    Article  Google Scholar 

  • Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions (with discussion). Stat Med 28:3049–3082

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Miller SD, Stephens GL, Drummond CK, Heidinger AK, Partain PT (2000) A multisensor diagnostic satellite cloud property retrieval scheme. J Geophys Res 105:19955–19971

    Article  Google Scholar 

  • Mitchell DL (1996) Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J Atmos Sci 53:1710–1723

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772.

    Article  Google Scholar 

  • O’Dell CW, Heidinger AK, Greenwald T, Bauer P, Bennartz R (2006) The successive-order-of-interaction radiative transfer model. Part II: model performance and applications. J Appl Meteorol Climatol 45:1403–1413

    Article  Google Scholar 

  • Palmer TN, Shutts GJ, Hagedorn R, Doblas-Reyes FJ, Jung T, Leutbecher M (2005) Representing model uncertainty in weather and climate prediction. Annu Rev Earth Planet Sci 33:163–193

    Article  Google Scholar 

  • Petch JC, Gray MEB (2001) Sensitivity studies using a cloud-resolving model simulation of the tropical west Pacific. Q J R Meteorol Soc 127:2287–2306

    Article  Google Scholar 

  • Posselt DJ, Bishop CH (2012) Nonlinear parameter estimation: comparison of an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm. Mon Weather Rev 140:1957–1974

    Article  Google Scholar 

  • Posselt DJ, Vukicevic T (2010) Robust characterization of model physics uncertainty for simulations of deep moist convection. Mon Weather Rev 138:1513–1535

    Article  Google Scholar 

  • Posselt DJ, L’Ecuyer TS, Stephens GL (2008a) Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithm. J Geophys Res 113:D24206. doi:10.1029/2008JD010832

    Article  Google Scholar 

  • Posselt DJ, Stephens GL, Miller M (2008b) CloudSat: adding a new dimension to a classical view of extratropical cyclones. Bull Am Meteorol Soc 89:599–609

    Article  Google Scholar 

  • Prabhakara C, Fraser RS, Dalu G, Wu MLC, Curran RJ (1988) Thin cirrus clouds: seasonal distribution over oceans deduced from Nimbus-4 IRIS. J Appl Meteorol 27:379- 399 (1988)

    Article  Google Scholar 

  • Roberts GO, Rosenthal JS (1998) Optimal scaling of discrete approximations to Langevin diffusions. J R Stat Soc Ser B (Stat Methodol) 60:255–268

    Article  Google Scholar 

  • Roberts GO, Rosenthal JS (2001) Optimal scaling for various Metropolis-Hastings algorithms. Stat Sci 16:351–367

    Article  Google Scholar 

  • Roberts GO, Rosenthal JS (2007) Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J Appl Probab 44:458–475

    Article  Google Scholar 

  • Roberts GO, Rosenthal JS (2009) Examples of adaptive MCMC. J Comput Graph Stat 18:349–367

    Article  Google Scholar 

  • Roberts GO, Gelman A, Gilks WR (1997) Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann Appl Probab 7:110–120

    Article  Google Scholar 

  • Rodgers CD (2000) Inverse methods for atmospheric sounding, theory and practice. World Scientific, Singapore

    Book  Google Scholar 

  • Roy SS, Datta RK, Bhatia RC, Sharma AK (2005) Drop size distributions of tropical rain over south India. Geofizika 22:105–130

    Google Scholar 

  • Rubin DB (1987) The calculation of posterior distributions by data augmentation: comment: a noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: the SIR algorithm. J Am Stat Assoc 82:543–546

    Google Scholar 

  • Rutledge SA, Hobbs PV (1983) The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: a model for the “seeder-feeder” process in warm-frontal rainbands. J Atmos Sci 40:1185–1206

    Article  Google Scholar 

  • Rutledge SA, Hobbs PV (1984) The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: a diagnostic modeling study of precipitation development in narrow cold frontal rainbands. J Atmos Sci 41:2949–2972

    Google Scholar 

  • Sasaki Y (1970) Some basic formalisms in numerical variational analysis. Mon Weather Rev 98:875–883

    Article  Google Scholar 

  • Shannon C, Weaver W (1949) The mathematical theory of communication, University of Illinois Press, Champaign, p 144

    Google Scholar 

  • Stainforth DA et al (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  Google Scholar 

  • Tamminen J (2004) Validation of nonlinear inverse algorithms with Markov chain Monte Carlo method. J Geophys Res 109:D19303. doi:10.1029/2004JD004927

    Article  Google Scholar 

  • Tamminen J, Kyrola E (2001) Bayesian solution for nonlinear and non-Gaussian inverse problems by Markov chain Monte Carlo method. J Geophys Res 106:14377–14390

    Article  Google Scholar 

  • Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation. J Am Stat Assoc 82:528–540

    Article  Google Scholar 

  • Tao W-K, Scala JR, Ferrier BS, Simpson J (1995) The effect of melting processes on the development of a tropical and a midlatitude squall line. J Atmos Sci 52:1934–1948

    Article  Google Scholar 

  • Tao W-K, Simpson J, Baker D, Braun S, Chou M-D, Ferrier B, Johnson D, Khain A, Lang S, Lynn B, Shie C-L, Starr D, Sui C-H, Wang Y, Wetzel P (2003) Microphysics, radiation, and surface processes in the Goddard Cumulus Ensemble (GCE) model. A special issue on non-hydrostatic mesoscale modeling. Meteorol Atmos Phys 82:97–137

    Article  Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia

    Book  Google Scholar 

  • Tierney L (1994) Markov chains for exploring posterior distributions. Ann Stat 22:1701–1762

    Article  Google Scholar 

  • Tokay A, Short DA (1996) Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteorol 35:355–371

    Article  Google Scholar 

  • van den Heever SC, Cotton WR (2004) The impact of hail size on simulated supercell storms. J Atmos Sci 61:1596–1609

    Article  Google Scholar 

  • van Lier-Walqui M, Vukicevic T, Posselt DJ (2012) Quantification of cloud microphysical parameterization uncertainty using radar reflectivity. Mon Wea Rev 140:3442–3466

    Article  Google Scholar 

  • Vrugt JA, Ter Braak CJF (2011) DREAM(D): an adaptive Markov chain Monte Carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter estimation problems. Hydrol Earth Syst Sci 15:3701–3713

    Article  Google Scholar 

  • Vrugt J, Ter Braak C, Diks C, Robinson B, Hyman J, Hygdon D (2009) Accelerating Markov chain Monte Carlo simulation using self-adaptative differential evolution with randomized subspace sampling. Intl J Nonlinear Sci Numer Simul 10:1–12

    Article  Google Scholar 

  • Vukicevic T, Posselt DJ (2008) Analysis of the impact of model nonlinearities in inverse problem solving. J Atmos Sci 65:2803–2823

    Article  Google Scholar 

  • Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall/CRC, London

    Google Scholar 

  • Wu X, Hall WD, Grabowski WW, Moncrieff MW, Collins WD, Kiehl JT (1999) Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part II: effects of ice microphysics on cloud-radiation interaction. J Atmos Sci 56:3177–3195

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support of the NASA Modeling, Analysis, and Prediction program under grants NNX09AJ43G and NNX09AJ46G, the Office of Naval Research Broad Agency Announcement program under grant N00173-10-1-G035, and the National Science Foundation Physical and Dynamic Meteorology Program under grant AGS 1005454. Tomislava Vukicevic (NOAA-AOML), Craig Bishop (NRL-Monterey), Marcus van Lier-Walqui (U. Miami-RSMAS), Tristan L’Ecuyer (U. Wisconsin), Steve Cooper (U. Utah), and Graeme Stephens (NASA-JPL) all contributed to this research. Luca Della Monache (NCAR), Dan Hodyss (NRL-Monterey), Peter Norris (NASA Goddard Space Flight Center), and an anonymous reviewer all contributed valuable feedback on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek J. Posselt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Posselt, D.J. (2013). Markov Chain Monte Carlo Methods: Theory and Applications. In: Park, S., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35088-7_3

Download citation

Publish with us

Policies and ethics