Skip to main content

Recent Applications in Representer-Based Variational Data Assimilation

  • Chapter
  • First Online:
Book cover Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)

Abstract

Data assimilation with representer-based algorithms (also called “dual space” algorithms) are currently being used for weak-constraint four-dimensional variational data assimilation (W4D-Var) atmospheric prediction, distributed parameter estimation, and other hydrodynamic data assimilation problems. The iterative linear solvers at the core of these systems may display non-monotonic convergence in the norm defined by the primal objective function, and this behavior makes problematic the development of practical stopping criteria. One approach to this problem is described, namely an implementation of the inner solver using the generalized conjugate residual(GCR) algorithm. Additional elements of data assimilation systems are error model for the background, model forcings, and observations. An implementation of a posterior analysis method for diagnosing the error variances is described, and representative results from an atmospheric data assimilation systems are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett AF (1985) Array design by inverse methods. Prog Oceanogr 15:129–156

    Article  Google Scholar 

  • Bennett AF (1992) Inverse methods in physical oceanography, 1st edn. Cambridge University Press, New York, 346p

    Book  Google Scholar 

  • Bennett AF (2002) Inverse modeling of the ocean and atmosphere. Cambridge University Press, New York, 234p

    Book  Google Scholar 

  • Bennett AF, Thorburn MA (1992) The generalized inverse of a nonlinear quasigeostrophic ocean circulation model. J Phys Oceanogr 22:213–230

    Article  Google Scholar 

  • Bennett AF, Chua BS, Harrison DE, McPhaden MJ (2000) Generalized inversion of tropical atmosphere–ocean (TAO) data and a coupled model of the tropical ocean. Part II: the 1995–96 La Niña and 1997–98 El Niño. J Climate 13:2770–2785

    Article  Google Scholar 

  • Bennett AF, Chua BS, Pflaum BL, Erwig M, Fu Z, Loft RD, Muccino JC (2008) The inverse ocean modeling system. I: implementation. J Atmos Oceanic Technol 25:1608–1622

    Article  Google Scholar 

  • Chapnik B, Desroziers G, Rabier F, Talagrand O (2004) Properties and first application of an error-statistics tuning method in variational assimilation. Q J R Meteorol Soc 130:2253–2275

    Article  Google Scholar 

  • Chapnik B, Desroziers G, Rabier F, Talagrand O (2006) Diagnosis and tuning of observational error in quasi-operational data assimilation setting. Q J R Meteorol Soc 132:543–565

    Article  Google Scholar 

  • Chua B, Bennett AF (2001) An inverse ocean modeling system. Ocean Model 3:137–165

    Article  Google Scholar 

  • Cohn SE, Da Silva A, Guo J, Sienkiewicz M, Lamich D (1998) Assessing the effects of data selection with the DAO physical-space statistical analysis system. Mon Weather Rev 126:2913–2926

    Article  Google Scholar 

  • Courtier P (1997) Dual formulation of four-dimensional assimilation. Q J R Meteorol Soc 123:2449–2461

    Article  Google Scholar 

  • Courtier P, Thepaut J, Hollingsworth A (1994) A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorol Soc 120:1367–1387

    Article  Google Scholar 

  • Daley R, Barker E (2001) NAVDAS: formulation and diagnostics. Mon Weather Rev 129:869–883

    Article  Google Scholar 

  • de Sturler E (1994) Iterative methods on distributed memory computers. PhD thesis, Delft University of Technology, Delft, the Netherlands

    Google Scholar 

  • de Sturler E (1996) Nested Krylov methods based on GCR. J Comput Appl Math 67:15–41

    Article  Google Scholar 

  • Desroziers G, Ivanov S (2001) Diagnosis and adaptive tuning of observation-error parameters in a variational assimilation. Q J R Meteorol Soc 127:1433–1452

    Article  Google Scholar 

  • El Akkraoui A, Gauthier P (2010) Convergence properties of the primal and dual forms of variational data assimilation. Q J R Meteorol Soc 136:107–115

    Article  Google Scholar 

  • El Akkraoui A, Gauthier P, Pellerin S, Buis S (2008) Intercomparison of the primal and dual formulations of variational data assimilation. Q J R Meteorol Soc 134:1015–1025

    Article  Google Scholar 

  • Girard D (1989) A fast ‘Monte-Carlo cross-validation’ procedure for large least squares problems with noisy data. Numer Math 56:1–23

    Article  Google Scholar 

  • Giraud L, Ruiz D, Touhami A (2006) A comparative study of iterative solvers exploiting spectral information for spd systems. SIAM J Sci Comput 27:1760–1786

    Article  Google Scholar 

  • Golub G, Van Loan C (1989) Matrix computations, 2nd edn. Johns Hopkins University Press, Baltimore, 642p

    Google Scholar 

  • Gratton S, Tshimanga J (2009) An observation-space formulation of variational assimilation using a restricted preconditioned conjugate gradient algorithm. Q J R Meteorol Soc 135:1573–1585

    Article  Google Scholar 

  • Hogan T, Rosmond T (1991) The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon Weather Rev 119:1786–1815

    Article  Google Scholar 

  • Hutchinson MF (1989) A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun Stat Simul Comput 18:1059–1076

    Article  Google Scholar 

  • Lorenc A (1986) Analysis methods for numerical weather prediction. Q J R Meteorol Soc 112:117–1194

    Article  Google Scholar 

  • Muccino JC, Arango H, Bennett AB, Chua BS, Cornuelle B, DiLorenzo E, Egbert GD, Hao L, Levin J, Moore AM, Zaron ED (2008) The inverse ocean modeling system. II: applications. J Atmos Oceanic Technol 25:1623–1637

    Article  Google Scholar 

  • Parks ML, de Sturler E, Mackey G, Johnson DD, Maiti S (2006) Recycling Krylov subspaces for sequences of linear systems. SIAM J Sci Comput 28:1651–1674. doi:10.1137/040607277

    Article  Google Scholar 

  • Rosmond T, Xu L (2006) Development of NAVDAS-AR: nonlinear formulation and outer loop tests. Tellus 58A:45–58

    Google Scholar 

  • Sadiki W, Fischer C (2005) A posteriori validation applied to the 3D-var Arpege and Aladin data assimilation systems. Tellus 57A:21–34

    Google Scholar 

  • Talagrand O (1999) A posterior verification of analysis and assimilation algorithms. In: Proceedings of a workshop on diagnosis of data assimilation systems, ECMWF, Reading, UK

    Google Scholar 

  • Wahba G, Johnson DR, Gao F, Gong J (1995) Adaptive tuning of numerical weather prediction models: randomized GCV in three- and four-dimensional data assimilation. Mon Weather Rev 123:3358–3369

    Article  Google Scholar 

  • Xu L, Rosmond T, Daley R (2005) Development of NAVDAS-AR: formulation and initial tests of the linear problem. Tellus 57:546–559

    Article  Google Scholar 

  • Zaron ED (2006) A comparison of data assimilation methods using a planetary geostrophic model. Mon Weather Rev 134:1316–1328

    Article  Google Scholar 

  • Zaron ED, Chavanne C, Egbert GD, Flament P (2009) Baroclinic tidal generation in the Kauai Channel inferred from HF-Radar. Dyn Atmos Oceans 48:93–120. http://dx.doi.org/10.1016/j.dynatmoce.2009.03.002

Download references

Acknowledgements

Zaron was sponsored by the National Science Foundation (NSF), award OCE-0623540, with additional support from the Naval Research Laboratory, award N00173-08-2-C015. Authors Chua, Xu, Baker, and Rosmond gratefully acknowledge the support of their sponsors, the Naval Research Laboratory, the Office of Naval Research, and the PMW-120, under program elements, 0602435N and 0603207N, respectively. Computational resources for Zaron were provided by the National Center for Atmospheric Research, which is sponsored by NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boon S. Chua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chua, B.S., Zaron, E.D., Xu, L., Baker, N.L., Rosmond, T. (2013). Recent Applications in Representer-Based Variational Data Assimilation. In: Park, S., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35088-7_12

Download citation

Publish with us

Policies and ethics