Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 867))

  • 2555 Accesses

Abstract

Chapter 6 contains nonequilibrium Green’s function (NEGF) applications for non-lattice prototypes of inhomogeneous systems out of equilibrium: atoms, molecules, and electrons in semiconductor heterostructures exposed to weak and strong external fields.

The first part of the chapter focuses on small atoms and molecules and includes the description of their ground states in Hartree-Fock and second Born (2B) approximation. In particular, it is shown that the 2B approximation captures a good portion of the correlations. Importantly, this also holds in nonequilibrium situations. The second part deals with correlation-induced double excitations and their description by the 2B approximation and the generalized Kadanoff-Baym ansatz. To this end, optical absorption spectra are computed for a four-electron system confined in a quantum well.

For the one-dimensional examples discussed in this chapter, the finite element-discrete variable representation (introduced in Chap. 4) is used and demonstrates its benefits regarding the two-time solution of the Kadanoff-Baym equations. Moreover, the NEGF results are supplemented by thorough comparisons to exact diagonalization and solutions of the time-dependent Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that there also may exist discontinuities which are induced by boundary conditions or other constraints.

  2. 2.

    SI units, SI: Système International d’unités.

  3. 3.

    A x (t) denotes the x-component of the vector potential.

  4. 4.

    Without the contour delta function.

  5. 5.

    Recall definition (2.39).

  6. 6.

    Note, that we treat different spin degrees of freedom only by a degeneracy factor as outlined in Sect. 3.3.4.

  7. 7.

    In 2B approximation, this means we, in addition to the correlation functions, have also to propagate the mixed Green’s functions, which are obsolete in a mean-field (HF) description.

  8. 8.

    At least for the helium atom, where single and double excitations are energetically well separated from one another.

  9. 9.

    Both spectral functions are obtained by the real-time propagation method.

  10. 10.

    Adapted from Ref. [132].

  11. 11.

    A non-zero slope of the interaction potential at |z i z j |=0.

  12. 12.

    This is indicated by the primes in Eq. (6.15).

  13. 13.

    This applies also to other multiply-excited states.

  14. 14.

    See the lower panel of Fig. 6.7 and the last paragraph in Sect. 6.2.1.

  15. 15.

    More precisely, they have zero transition dipole moment for λ =0, cf. Sect. 6.2.1.

  16. 16.

    Notice, that this behavior is not a specialty of the GKBA as full 2B calculations do confirm this behavior, cf. the dots.

  17. 17.

    Here, the TDM is nearly constant for λ <1. Note that both behaviors can be understood by standard perturbation theory.

References

  1. J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, A. Scrinzi, Correlated multielectron systems in strong laser fields: a multiconfiguration time-dependent Hartree-Fock approach. Phys. Rev. A 71, 012712 (2005)

    Article  ADS  Google Scholar 

  2. M. Thiele, S. Kümmel, Photoabsorption spectra from adiabatically exact time-dependent density-functional theory in real time. Phys. Chem. Chem. Phys. 11, 4631 (2009)

    Article  Google Scholar 

  3. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry (Dover Publications, New York, 1996)

    Google Scholar 

  4. G. Tanner, K. Richter, J.-M. Rost, The theory of two-electron atoms: between ground state and complete fragmentation. Rev. Mod. Phys. 72, 497 (2000)

    Article  ADS  Google Scholar 

  5. S. Bauch, K. Balzer, M. Bonitz, Electronic correlations in double ionization of atoms in pump-probe experiments. Europhys. Lett. 91, 53001 (2010)

    Article  ADS  Google Scholar 

  6. N.E. Dahlen, R. van Leeuwen, Self-consistent solution of the Dyson equation for atoms and molecules within a conserving approximation. J. Chem. Phys. 122, 164102 (2005)

    Article  ADS  Google Scholar 

  7. J.M. Luttinger, J.C. Ward, Ground-state energy of a many-fermion system II. Phys. Rev. 118, 1417 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. N.E. Dahlen, A. Stan, R. van Leeuwen, Nonequilibrium Green function theory for excitation and transport in atoms and molecules. J. Phys. Conf. Ser. 35, 324 (2006)

    Article  ADS  Google Scholar 

  9. N.H. Kwong, M. Bonitz, R. Binder, H.S. Köhler, Semiconductor Kadanoff-Baym equation results for optically excited electron-hole plasmas in quantum wells. Phys. Status Solidi (b) 206, 197 (1998)

    Article  ADS  Google Scholar 

  10. M. Lorke, T.R. Nielsen, J. Seebeck, P. Gartner, F. Jahnke, Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems. Phys. Rev. B 73, 085324 (2006)

    Article  ADS  Google Scholar 

  11. K. Balzer, S. Hermanns, M. Bonitz, Electronic double-excitations in quantum wells: solving the two-time Kadanoff-Baym equations. Europhys. Lett. 98, 67002 (2012)

    Article  ADS  Google Scholar 

  12. K. Balzer, M. Bonitz, R. van Leeuwen, A. Stan, N.E. Dahlen, Nonequilibrium Green’s function approach to strongly correlated few-electron quantum dots. Phys. Rev. B 79, 245306 (2009)

    Article  ADS  Google Scholar 

  13. N.E. Dahlen, R. van Leeuwen, A. Stan, Propagating the Kadanoff-Baym equations for atoms and molecules. J. Phys. Conf. Ser. 35, 340 (2006)

    Article  ADS  Google Scholar 

  14. A. Stan, N.E. Dahlen, R. van Leeuwen, Fully self-consistent GW calculations for atoms and molecules. Europhys. Lett. 76, 298 (2006)

    Article  ADS  Google Scholar 

  15. N.E. Dahlen, R. van Leeuwen, Solving the Kadanoff-Baym equations for inhomogeneous systems: application to atoms and molecules. Phys. Rev. Lett. 98, 153004 (2007)

    Article  ADS  Google Scholar 

  16. K. Balzer, S. Bauch, M. Bonitz, Time-dependent second-order Born calculations for model atoms and molecules in strong laser fields. Phys. Rev. A 82, 033427 (2010)

    Article  ADS  Google Scholar 

  17. N. Säkkinen, M. Manninen, R. van Leeuwen, The Kadanoff–Baym approach to double excitations in finite systems. New J. Phys. 14, 013032 (2012)

    Article  Google Scholar 

  18. G.W.F. Drake (ed.), Handbook of Atomic, Molecular and Optical Physics (Springer, New York, 2006)

    Google Scholar 

  19. S.L. Haan, R. Grobe, J.H. Eberly, Numerical study of autoionizing states in completely correlated two-electron systems. Phys. Rev. A 50, 378 (1994)

    Article  ADS  Google Scholar 

  20. J. Javanainen, J.H. Eberly, Q. Su, Numerical simulations of multiphoton ionization and above-threshold electron spectra. Phys. Rev. A 38, 3430 (1988)

    Article  ADS  Google Scholar 

  21. V.C. Reed, P.L. Knight, K. Burnett, Suppression of ionization in superintense fields without dichotomy. Phys. Rev. Lett. 67, 1415 (1991)

    Article  ADS  Google Scholar 

  22. U. Schwengelbeck, F.H.M. Faisal, Ionization of the one-dimensional Coulomb atom in an intense laser field. Phys. Rev. A 50, 632 (1994)

    Article  ADS  Google Scholar 

  23. M.S. Pindzola, D.C. Griffin, C. Bottcher, Validity of time-dependent Hartree-Fock theory for the multiphoton ionization of atoms. Phys. Rev. Lett. 66, 2305 (1991)

    Article  ADS  Google Scholar 

  24. R. Grobe, J.H. Eberly, Photoelectron spectra for a two-electron system in a strong laser field. Phys. Rev. Lett. 68, 2905 (1992)

    Article  ADS  Google Scholar 

  25. R. Grobe, J.H. Eberly, Single and double ionization and strong-field stabilization of a two-electron system. Phys. Rev. A 47, R1605 (1993)

    Article  ADS  Google Scholar 

  26. K. Richter, G. Tanner, D. Wintgen, Classical mechanics of two-electron atoms. Phys. Rev. A 48, 4182 (1993)

    Article  ADS  Google Scholar 

  27. D. Bauer, Two-dimensional, two-electron model atom in a laser pulse: exact treatment, single-active-electron analysis, time-dependent density-functional theory, classical calculations, and nonsequential ionization. Phys. Rev. A 56, 3028 (1997)

    Article  ADS  Google Scholar 

  28. M. Lein, E.K.U. Gross, V. Engel, Intense-field double ionization of helium: identifying the mechanism. Phys. Rev. Lett. 85, 4707 (2000)

    Article  ADS  Google Scholar 

  29. A. López-Castillo, M.A.M. de Aguiar, A.M. Ozorio de Almeida, On the one-dimensional helium atom. J. Phys. B, At. Mol. Opt. Phys. 29, 197 (1996)

    Article  ADS  Google Scholar 

  30. N.E. Dahlen, R. van Leeuwen, Double ionization of a two-electron system in the time-dependent extended Hartree-Fock approximation. Phys. Rev. A 64, 023405 (2001)

    Article  ADS  Google Scholar 

  31. M. Ruggenthaler, D. Bauer, Rabi oscillations and few-level approximations in time-dependent density functional theory. Phys. Rev. Lett. 102, 233001 (2009)

    Article  ADS  Google Scholar 

  32. M. Ruggenthaler, D. Bauer, Local Hartree-exchange and correlation potential defined by local force equations. Phys. Rev. A 80, 052502 (2009)

    Article  ADS  Google Scholar 

  33. D. Hochstuhl, S. Bauch, M. Bonitz, Multiconfigurational time-dependent Hartree-Fock calculations for photoionization of one-dimensional helium. J. Phys. Conf. Ser. 220, 012019 (2010)

    Article  ADS  Google Scholar 

  34. H. Yu, T. Zuo, A.D. Bandrauk, Molecules in intense laser fields: enhanced ionization in a one-dimensional model of H2. Phys. Rev. A 54, 3290 (1996)

    Article  ADS  Google Scholar 

  35. I. Kawata, H. Kono, A.D. Bandrauk, Mechanism of enhanced ionization of linear \(\mathrm{H}_{3}^{+}\) in intense laser fields. Phys. Rev. A 64, 043411 (2001)

    Article  ADS  Google Scholar 

  36. N. Suzuki, I. Kawata, K. Yamashita, Comparison of the mechanisms of enhanced ionization of H2 and in intense laser fields. Chem. Phys. 338, 348 (2007)

    Article  ADS  Google Scholar 

  37. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, Heidelberg, 1990)

    MATH  Google Scholar 

  38. A. López-Castillo, Semiclassical study of the one-dimensional hydrogen molecule. Chaos 18, 033130 (2008)

    Article  ADS  Google Scholar 

  39. N. Takemoto, A. Becker, Visualization and interpretation of attosecond electron dynamics in laser-driven hydrogen molecular ion using Bohmian trajectories. J. Chem. Phys. 134, 074309 (2011)

    Article  ADS  Google Scholar 

  40. M. Nakano, K. Yamaguchi, Electron-correlation dynamics of a one-dimensional H2 model in a quantized photon field. Chem. Phys. Lett. 317, 103 (2000)

    Article  ADS  Google Scholar 

  41. J. Zanghellini, M. Kitzler, C. Fabian, Th. Brabec, A. Scrinzi, An MCTDHF approach to multielectron dynamics in laser fields. Laser Phys. 13, 1064 (2003)

    Google Scholar 

  42. J. Zanghellini, M. Kitzler, Th. Brabec, A. Scrinzi, Testing the multi-configuration time-dependent Hartree-Fock method. J. Phys. B, At. Mol. Opt. Phys. 37, 763 (2004)

    Article  ADS  Google Scholar 

  43. D.G. Tempel, T.J. Martínez, N.T. Maitra, Revisiting molecular dissociation in density functional theory: a simple model. J. Chem. Theory Comput. 5, 770 (2009)

    Article  Google Scholar 

  44. P. Schlagheck, A. Buchleitner, Nondispersive two-electron wave packets in driven helium. Eur. Phys. J. D 22, 401 (2003)

    Article  ADS  Google Scholar 

  45. C. Ruiz, L. Plaja, L. Roso, A. Becker, Ab initio calculation of the double ionization of helium in a few-cycle laser pulse beyond the one-dimensional approximation. Phys. Rev. Lett. 96, 053001 (2006)

    Article  ADS  Google Scholar 

  46. K. Balzer, S. Bauch, M. Bonitz, Efficient grid-based method in nonequilibrium Green’s function calculations: application to model atoms and molecules. Phys. Rev. A 81, 022510 (2010)

    Article  ADS  Google Scholar 

  47. D. Hochstuhl, K. Balzer, S. Bauch, M. Bonitz, Nonequilibrium Green function approach to photoionization processes in atoms. Physica E, Low-Dimens. Syst. Nanostruct. 42, 513 (2010)

    Article  ADS  Google Scholar 

  48. S. Bauch, K. Balzer, P. Ludwig, A. Filinov, M. Bonitz, Introduction to quantum plasma simulations, in Introduction to Complex Plasmas, ed. by M. Bonitz, N. Horing, P. Ludwig. Springer Series Atomic, Optical and Plasma Physics, vol. 59 (Springer, Berlin, 2010)

    Chapter  Google Scholar 

  49. K. Balzer, S. Bauch, M. Bonitz, Finite elements and the discrete variable representation in nonequilibrium Green’s function calculations. Atomic and molecular models. J. Phys. Conf. Ser. 220, 012020 (2010)

    Article  ADS  Google Scholar 

  50. P.-O. Löwdin, Exchange, correlation, and spin effects in molecular and solid-state theory. Rev. Mod. Phys. 34, 80 (1962)

    Article  ADS  Google Scholar 

  51. A. Stan, N.E. Dahlen, R. van Leeuwen, Levels of self-consistency in the GW approximation. J. Chem. Phys. 130, 114105 (2009)

    Article  ADS  Google Scholar 

  52. R.C. Ashoori, Electrons in artificial atoms. Nature 379, 413 (1996)

    Article  ADS  Google Scholar 

  53. S.M. Reimann, M. Manninen, Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283 (2002)

    Article  ADS  Google Scholar 

  54. L. Bányai, S.W. Koch, Semiconductor Quantum Dots (World Scientific, Singapore, 1993)

    Google Scholar 

  55. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1 (2002)

    Article  ADS  Google Scholar 

  56. M.A. Kastner, The single-electron transistor. Rev. Mod. Phys. 64, 849 (1992)

    Article  ADS  Google Scholar 

  57. D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  58. P. Harrison, Quantum Wells, Wires and Dots—Theoretical and Computational Physics of Semiconductor Nanostructures (Wiley, Chichester, 2005)

    Book  Google Scholar 

  59. G.W. Hanson, Fundamentals of Nanoelectronics (Pearson/Prentice Hall, Upper Saddle River, 2008)

    Google Scholar 

  60. A.V. Filinov, M. Bonitz, Yu.E. Lozovik, Wigner crystallization in mesoscopic 2D electron systems. Phys. Rev. Lett. 86, 3851 (2001)

    Article  ADS  Google Scholar 

  61. K. Balzer, M. Bonitz, Nonequilibrium properties of strongly correlated artificial atoms—a Green’s functions approach. J. Phys. A, Math. Theor. 42, 214020 (2009)

    Article  ADS  Google Scholar 

  62. P. Ludwig, K. Balzer, A. Filinov, H. Stolz, M. Bonitz, On the Coulomb-dipole transition in mesoscopic classical and quantum electron-hole bilayers. New J. Phys. 10, 083031 (2008)

    Article  ADS  Google Scholar 

  63. S. Bednarek, B. Szafran, T. Chwiej, J. Adamowski, Effective interaction for charge carriers confined in quasi-one-dimensional nanostructures. Phys. Rev. B 68, 045328 (2003)

    Article  ADS  Google Scholar 

  64. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1994)

    MATH  Google Scholar 

  65. J.F. Stanton, R.J. Bartlett, The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys. 98, 7029 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balzer, K., Bonitz, M. (2013). Non-Lattice Systems. In: Nonequilibrium Green's Functions Approach to Inhomogeneous Systems. Lecture Notes in Physics, vol 867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35082-5_6

Download citation

Publish with us

Policies and ethics