Skip to main content

Lattice Systems

  • Chapter
  • 2573 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 867))

Abstract

Finite lattice systems represent the (computationally) simplest class of inhomogeneous quantum systems. This fact explains why a relatively large number of NEGF studies are available including the Anderson (impurity) model, the Hubbard model and even sophisticated quantum transport models involving leads.

The present chapter begins with a chronological literature overview listing the most important publications and also recent advances in the field. Furthermore, to give a tutorial example, a minimal Fermi-Hubbard model is explored at various interaction strengths and for excitations in the linear and non-linear response regimes. The results are based on the second Born approximation and the generalized Kadanoff-Baym ansatz (GKBA). In the course of this, the GKBA is proven to overcome problems observed in two-time calculations for finite systems, such as artificial steady states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We mainly focus on papers, that apply specific many-body approximations to the KBEs and, for example, do not cover dynamical mean-field theory-based works. For an overview in this direction, see Refs. [42, 164] and references therein.

  2. 2.

    While LDA means “local-density approximation”, the parameter U indicates a purely local Hubbard-type interaction, cf. Sect. 5.2.

  3. 3.

    The hopping amplitude is related to the overlap between the one-particle orbitals on different lattice sites.

  4. 4.

    Although the exact finite lattice system has a finite number of poles.

  5. 5.

    There is one up- and one down-spin electron in the system (N=N +N =2).

  6. 6.

    We emphasize that energy and particle number conservation is fulfilled at all times.

  7. 7.

    The GKBA data are provided by S. Hermanns (University Kiel) [178].

  8. 8.

    A double excitation is a correlation-induced process where two electrons are excited simultaneously.

  9. 9.

    For a more detailed discussion on single and double excitations, see Sects. 6.2.1 and 6.2.2.

References

  1. E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein (eds.), The LDA+DMFT Approach to Strongly Correlated Materials (Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, Jülich, 2011)

    Google Scholar 

  2. G. Stefanucci, E. Perfetto, M. Cini, Time-dependent quantum transport with superconducting leads. J. Phys. Conf. Ser. 220, 012012 (2010)

    Article  ADS  Google Scholar 

  3. M. Puig von Friesen, C. Verdozzi, C.-O. Almbladh, Kadanoff-Baym dynamics of Hubbard clusters: performance of many-body schemes, correlation-induced damping and multiple steady and quasi-steady states. Phys. Rev. B 82, 155108 (2010)

    Article  ADS  Google Scholar 

  4. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys. Condens. Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  5. D. Vollhardt, Dynamical mean-field theory for correlated electrons. Ann. Phys. 524, 1 (2012)

    Article  MATH  Google Scholar 

  6. K.S. Thygesen, A. Rubio, Nonequilibrium GW approach to quantum transport in nano-scale contacts. J. Chem. Phys. 126, 91101 (2007)

    Article  Google Scholar 

  7. K.S. Thygesen, Impact of exchange-correlation effects on the IV characteristics of a molecular junction. Phys. Rev. Lett. 100, 166804 (2010)

    Article  ADS  Google Scholar 

  8. P. Myöhänen, A. Stan, G. Stefanucci, R. van Leeuwen, A many-body approach to quantum transport dynamics: initial correlations and memory effects. Europhys. Lett. 84, 67001 (2008)

    Article  ADS  Google Scholar 

  9. P. Myöhänen, A. Stan, G. Stefanucci, R. van Leeuwen, Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: from the transient to the steady-state regime. Phys. Rev. B 80, 115107 (2009)

    Article  ADS  Google Scholar 

  10. P. Myöhänen, A. Stan, G. Stefanucci, R. van Leeuwen, Kadanoff-Baym approach to time-dependent quantum transport in AC and DC fields. J. Phys. Conf. Ser. 220, 012017 (2010)

    Article  ADS  Google Scholar 

  11. M. Puig von Friesen, C. Verdozzi, C.-O. Almbladh, Successes and failures of Kadanoff-Baym dynamics in Hubbard nanoclusters. Phys. Rev. Lett. 103, 176404 (2009)

    Article  ADS  Google Scholar 

  12. C. Verdozzi, D. Karlsson, M. Puig von Friesen, C.-O. Almbladh, U. von Barth, Some open questions in TDDFT: clues from lattice models and Kadanoff-Baym dynamics. Chem. Phys. 391, 37 (2011)

    Article  ADS  Google Scholar 

  13. A.-M. Uimonen, E. Khosravi, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, E.K.U. Gross, Comparative study of many-body perturbation theory and time-dependent density functional theory in the out-of-equilibrium Anderson model. Phys. Rev. B 84, 115103 (2011)

    Article  ADS  Google Scholar 

  14. N. Säkkinen, M. Manninen, R. van Leeuwen, The Kadanoff–Baym approach to double excitations in finite systems. New J. Phys. 14, 013032 (2012)

    Article  Google Scholar 

  15. P. Myöhänen, R. Tuovinen, T. Korhonen, G. Stefanucci, R. van Leeuwen, Image charge dynamics in time-dependent quantum transport. Phys. Rev. B 85, 075105 (2012)

    Article  ADS  Google Scholar 

  16. E. Khosravi, A.-M. Uimonen, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, E.K.U. Gross, Correlation effects in bistability at the nanoscale: steady state and beyond. Phys. Rev. B 85, 075103 (2012)

    Article  ADS  Google Scholar 

  17. M. Puig von Friesen, C. Verdozzi, C.-O. Almbladh, Kadanoff-Baym equations and approximate double occupancy in a Hubbard dimer, arXiv:1009.2917 (2010)

  18. S.A. Jafari, Introduction to Hubbard model and exact diagonalization. Iran. J. Phys. Res. 8, 113 (2008)

    Google Scholar 

  19. S. Hermanns, K. Balzer, M. Bonitz, in preparation (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balzer, K., Bonitz, M. (2013). Lattice Systems. In: Nonequilibrium Green's Functions Approach to Inhomogeneous Systems. Lecture Notes in Physics, vol 867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35082-5_5

Download citation

Publish with us

Policies and ethics