Skip to main content

History of the Observed Centres in Silicon

  • Chapter
  • First Online:
  • 578 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Many of the IBE centres studied in this thesis have been discussed in the past. While none of those prior publications could ultimately determine the actual constituents of these complexes, a number of important properties have been determined, over the years, through various different experiments. Many of these characteristics are introduced in this chapter for the “Cu-pair” (\(\mathrm{{Cu}}_{4}\)), the “ \(\,^\star \)Cu-pair” (Cu\(_3\)Ag), the “single Ag” (\(\mathrm{{Ag}}_{4}\)), the “Au-Fe pair” (Cu\(_3\)Au), the “Fe-B pair” (Cu\(_4\)Au), and the Cu\(_4\)Pt and Cu\(_3\)Pt complexes. The related \(\mathrm{{S}}_\mathrm{{A}}\)and \(\mathrm{{S}}_\mathrm{{B}}\)  centres as well as the Li\(_4\)-vacancy centres, are introduced as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Minaev, A. Mudryi, V. Tkachev, Radiative recombination at thermal defects in silicon. Sov. Phys. Semicond. 13, 233 (1979)

    Google Scholar 

  2. J. Weber, P. Wagner, Photoluminescence from Deep States associated with iron in silicon. J. Phys. Soc. Jpn. 49(Suppl. A), 263–266 (1980)

    Google Scholar 

  3. J. Weber, H. Bauch, R. Sauer, Optical properties of copper in silicon: Excitons bound to isoelectronic copper pairs. Phys. Rev. B 25, 7688–7699 (1982)

    Google Scholar 

  4. J.D. Struthers, solubility and diffusivity of gold, iron, and copper in silicon. J. Appl. Phys. 27, 1560–1560 (1956)

    Google Scholar 

  5. K. Graff, H. Pieper, in Semiconductor Silicon, ed. by H.R. Ruff, R.S. Kriegler, Y. Takeishi (Electrochemical Society, Pennington, 1981)

    Google Scholar 

  6. S. Watkins, U. Ziemelis, M. Thewalt, Long lifetime photoluminescence from a deep centre in copper-doped silicon. Solid State Commun. 43, 687–690 (1982)

    Google Scholar 

  7. R. Sauer, J. Weber, Vibronic coupling and implications in the copper related 1.014 eV photoluminescence spectrum in silicon. Solid State Commun. 49, 833–836 (1984)

    Google Scholar 

  8. G. Davies, The optical properties of luminescence centres in silicon. Phys. Rep. 176, 83–188 (1989)

    Google Scholar 

  9. S. Brotherton, J. Ayres, A. Gill, H. van Kesteren, F. Greidanus, Deep levels of copper in silicon. J. Appl. Phys. 62, 1826–1832 (1987)

    Google Scholar 

  10. H.B. Erzgräber, K. Schmalz, Correlation between the Cu-related luminescent center and a deep level in silicon. J. Appl. Phys. 78, 4066–4068 (1995)

    Google Scholar 

  11. M.H. Nazaré, A.J. Duarte, A.G. Steele, G. Davies, E.C. Lightowlers, Shallow excited states of the 1014 meV Cu related optical center in silicon. Mater. Sci. Forum 83–87, 191–196 (1992)

    Google Scholar 

  12. A.A. Istratov, T. Heiser, H. Hieslmair, C. Flink, J. Krüger, E.R. Weber, A study of the copper-pair related centers in silicon. Mater. Sci. Forum 258–263, 467–472 (1997)

    Google Scholar 

  13. A.A. Istratov, H. Hieslmair, T. Heiser, C. Flink, E.R. Weber, The dissociation energy and the charge state of a copper-pair center in silicon. Appl. Phys. Lett. 72, 474–476 (1998)

    Google Scholar 

  14. S. Estreicher, Rich chemistry of copper in crystalline silicon. Phys. Rev. B 60, 5375–5382 (1999)

    Google Scholar 

  15. S. Knack, J. Weber, H. Lemke, H. Riemann, Evolution of copper-hydrogen-related defects in silicon. Phys. B 308–310, 404–407 (2001)

    Google Scholar 

  16. A.A. Istratov, E.R. Weber, Physics of copper in silicon. J. Electrochem. Soc. 149, G21–G30 (2002)

    Google Scholar 

  17. S. Knack, Copper-related defects in silicon. Mater. Sci. Semicond. Process. 7, 125–141 (2004)

    Google Scholar 

  18. M. Nakamura, S. Ishiwari, A. Tanaka, Number of Cu atom(s) in the 1.014 eV photoluminescence copper center and the center’s model in silicon crystal. Appl. Phys. Lett. 73, 2325–2327 (1998)

    Google Scholar 

  19. M. Nakamura, Dissociation of the 1.014 eV photoluminescence copper center in silicon crystal. Appl. Phys. Lett. 73, 3896–3898 (1998)

    Google Scholar 

  20. M. Nakamura, H. Iwasaki, Copper complexes in silicon. J. Appl. Phys. 86, 5372–5375 (1999)

    Google Scholar 

  21. M. Nakamura, S. Murakami, Depth progression of dissociation reaction of the 1.014 eV photoluminescence copper center in copper-diffused silicon crystal measured by deep-level transient spectroscopy. Appl. Phys. Lett. 98, 141909 (2011)

    Google Scholar 

  22. S. Estreicher, D. West, J. Pruneda, S. Knack, J. Weber, Formation and properties of three copper pairs in silicon. Mater. Res. Soc. Symp. Proc. 719, 421–426 (2002)

    Google Scholar 

  23. S. Estreicher, D. West, J. Goss, S. Knack, J. Weber, First-principles calculations of pseudolocal vibrational modes: the case of Cu and Cu pairs in Si. Phys. Rev. Lett. 90, 035504 (2003)

    Google Scholar 

  24. S. Estreicher, First-principles theory of copper in silicon. Mater. Sci. Semicond. Process. 7, 101–111 (2004)

    Google Scholar 

  25. M. Nakamura, H. Ohno, S. Murakami, Formation of the 1.014 eV photoluminescence Cu center in Cu-implanted silicon crystals and the center’s model. Jpn. J. Appl. Phys. 43, L1466–1468 (2004)

    Google Scholar 

  26. M. Nakamura, S. Murakami, H. Hozoji, N. Kawai, S. Saito, H. Arie, Concentration study of deep-level Cu center in Cu-diffused Si crystals by deep-level transient spectroscopy and photoluminescence measurements. Jpn. J. Appl. Phys. 45, L80 (2006)

    Google Scholar 

  27. M. Thewalt, M. Steger, A. Yang, M. Cardona, H. Riemann, N. Abrosimov, M. Churbanov, A. Gusev, A. Bulanov, I. Kovalev, A. Kaliteevskii, O. Godisov, P. Becker, H.-J. Pohl, Can highly enriched \(^{28}\)Si reveal new things about old defects? Phys. B 401–402, 587–592 (2007)

    Google Scholar 

  28. D. Karaiskaj, M. Thewalt, T. Ruf, M. Cardona, H.-J. Pohl, G. Deviatych, P. Sennikov, H. Riemann, Photoluminescence of isotopically purified silicon: how sharp are bound exciton transitions? Phys. Rev. Lett. 86, 6010–6013 (2001)

    Google Scholar 

  29. D. Karaiskaj, J. Stotz, T. Meyer, M. Thewalt, M. Cardona, Impurity absorption spectroscopy in \(^{28}\)Si: the importance of inhomogeneous isotope broadening. Phys. Rev. Lett. 90, 186402 (2003)

    Google Scholar 

  30. M. Cardona, M. Thewalt, Isotope effects on the optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173 (2005)

    Google Scholar 

  31. A. Yang, M. Steger, D. Karaiskaj, M. Thewalt, M. Cardona, K. Itoh, H. Riemann, N. Abrosimov, M. F. Churbanov, A. Gusev, A. Bulanov, A. Kaliteevskii, O. Godisov, P. Becker, H.-J. Pohl, J. Ager III, E. Haller, Optical detection and ionization of donors in specific electronic and nuclear spin states. Phys. Rev. Lett. 97, 227401 (2006)

    Google Scholar 

  32. M. Thewalt, A. Yang, M. Steger, D. Karaiskaj, M. Cardona, H. Riemann, N. Abrosimov, A. Gusev, A. Bulanov, I. Kovalev, A. Kaliteevskii, O. Godisov, P. Becker, H. Pohl, E. Haller, J. Ager III, K. Itoh, Direct observation of the donor nuclear spin in a near-gap bound exciton transition: \(^{31}\)P in highly enriched \(^{28}\)Si. J. Appl. Phys. 101, 081724 (2007)

    Google Scholar 

  33. M. Nakamura, S. Murakami, N.J. Kawai, S. Saito, H. Arie, Diffusion-temperature-dependent formation of Cu centers in Cu-saturated silicon crystals studied by photoluminescence and deep-level transient spectroscopy. Jpn. J. Appl. Phys. 47, 4398–4402 (2008)

    Google Scholar 

  34. M. Nakamura, S. Murakami, N.J. Kawai, S. Saito, K. Matsukawa, H. Arie, Compositional transformation between Cu centers by annealing in Cu-diffused silicon crystals studied with deep-level transient spectroscopy and photoluminescence. Jpn. J. Appl. Phys. 48, 082302 (2009)

    Google Scholar 

  35. M. Nakamura, S. Murakami, Deep-level transient spectroscopy and photoluminescence studies of formation and depth profiles of copper centers in silicon crystals diffused with dilute copper. Jpn. J. Appl. Phys. 49, 071302 (2010)

    Google Scholar 

  36. K. Shirai, H. Yamaguchi, A. Yanase, H. Katayama-Yoshida, A new structure of Cu complex in Si and its photoluminescence. J. Phys. Cond. Mater. 21, 064249 (2009)

    Google Scholar 

  37. K. Shirai, H. Yamaguchi, J. Ishisada, K. Matsukawa, A. Yanase, S. Emura, Cu complex in silicon and its photoluminescence, in AIP Conference Proceedings, vol. 1199, ed. by M. Caldas, N. Studart, 2010, pp. 91–92

    Google Scholar 

  38. S.K. Estreicher, A. Carvalho, The Cu\(_{\rm {PL}}\) defect and the Cu\(_{\rm {s1}}\)Cu\(_{\rm {i3}}\) complex. Phys. B: Cond. Mat. 407(15), 2967–2969 (2012)

    Google Scholar 

  39. A. Carvalho, D.J. Backlund, S.K. Estreicher, Four-copper complexes in Si and the Cu\(_{\rm {PL}}\) defect: a first-principles study. Phys. Rev. B 84, 155322 (2011)

    Google Scholar 

  40. K. McGuigan, M. Henry, E. Lightowlers, A. Steele, M. Thewalt, A new photoluminescence band in silicon lightly doped with copper. Solid State Commun. 68, 7–11 (1988)

    Google Scholar 

  41. K. McGuigan, M. Henry, M. Carmo, G. Davies, E. Lightowlers, A uniaxial stress study of a copper-related photoluminescence band in silicon. Mater. Sci. Eng. B 4, 269–272 (1989)

    Google Scholar 

  42. S. Estreicher, D. West, M. Sanati, \(^\star \)Cu\(_0\): a metastable configuration of the Cu\(_{\rm {s}}\)-Cu\(_{\rm {i}}\) pair in Si. Phys. Rev. B 72, 121201 (2005)

    Google Scholar 

  43. N.Q. Vinh, J. Phillips, G. Davies, T. Gregorkiewicz, Time-resolved free-electron laser spectroscopy of a copper isoelectronic center in silicon. Phys. Rev. B 71, 085206 (2005)

    Google Scholar 

  44. A. Yang, M. Steger, M. Thewalt, M. Cardona, H. Riemann, N. Abrosimov, M. Churbanov, A. Gusev, A. Bulanov, I. Kovalev, A. Kaliteevskii, O. Godisov, P. Becker, H.-J. Pohl, J. Ager III, E. Haller, High resolution photoluminescence of sulphur- and copper-related isoelectronic bound excitons in highly enriched \(^{28}\)Si. Phys. B 401–402, 593–596 (2007)

    Google Scholar 

  45. M. Steger, A. Yang, N. Stavrias, M. Thewalt, H. Riemann, N. Abros imov, M. Churbanov, A. Gusev, A. Bulanov, I. Kovalev, A. Kaliteevskii, O. Godisov, P. Becker, H.-J. Pohl, Reduction of the linewidths of deep luminescence centers in \(^{28}\)Si reveals fingerprints of the isotope constituents. Phys. Rev. Lett. 100, 177402 (2008)

    Google Scholar 

  46. N.Q. Vinh, T. Gregorkiewicz, Two-color mid-infrared spectroscopy of isoelectronic centers in silicon, in MRS Proceedings, vol. 770 (Cambridge University Press, Cambridge, 2003), p. I4.2

    Google Scholar 

  47. J. Olajos, M. Kleverman, H. Grimmeiss, High-resolution spectroscopy of silver-doped silicon. Phys. Rev. B 38, 10633–10640 (1988)

    Google Scholar 

  48. N. Baber, H.G. Grimmeiss, M. Kleverman, P. Omling, M. Zafar Iqbal, Characterization of silver-related deep levels in silicon. J. Appl. Phys. 62, 2853–2857 (1987)

    Google Scholar 

  49. M. Nazaré, M. Carmo, A. Duarte, Luminescence from transition metal centres in silicon doped with silver and nickel. Mater. Sci. Eng. B 4, 273–276 (1989)

    Google Scholar 

  50. M.O. Henry, E. Alves, J. Bollmann, A. Burchard, M. Deicher, M. Fanciulli, D. Forkel-Wirth, M.H. Knopf, S. Lindner, R. Magerle, R. McGlynn, K.G. McGuigan, J.C. Soares, A. Stotzler, G. Weyer, Radioactive isotope identifications of Au and Pt photoluminescence centres in silicon. Phys. Status Solidi B 210, 853 (1998)

    Google Scholar 

  51. N.T. Son, M. Singh, J. Dalfors, B. Monemar, E. Janzén, Electronic structure of a photoluminescent center in silver-doped silicon. Phys. Rev. B 49, 17428–17431 (1994)

    Google Scholar 

  52. M. Singh, W. Chen, N. Son, B. Monemar, E. Janzén, Shallow excited states of deep luminescent centers in silicon. Solid State Commun. 93, 415–418 (1995)

    Google Scholar 

  53. N.T. Son, V.E. Kustov, T. Gregorkiewicz, C.A.J. Ammerlaan, Electron-paramagnetic-resonance identification of silver centers in silicon Phys. Rev. B 46, 4544–4550 (1992)

    Google Scholar 

  54. N.T. Son, T. Gregorkiewicz, C.A.J. Ammerlaan, Magnetic resonance spectroscopy in silver-doped silicon. J. Appl. Phys. 73, 1797–1801 (1993)

    Google Scholar 

  55. M.Z. Iqbal, G. Davies, E.C. Lightowlers, Photoluminescence from silver-related defects in silicon, in Defects in Semiconductors, ICDS-17, vol. 143, ed. by H. Heinrich, W. Jantsch, Materials Science Forum (1994), pp. 773–777

    Google Scholar 

  56. N. Vinh, T. Gregorkiewicz, K. Thonke, 780-meV photoluminescence band in silver-doped silicon: isotope effect and time-resolved spectroscopy. Phys. Rev. B 65, 033202 (2001)

    Google Scholar 

  57. G. Davies, T. Gregorkiewicz, M.Z. Iqbal, M. Kleverman, E. Lightowlers, N. Vinh, M. Zhu, Optical properties of a silver-related defect in silicon. Phys. Rev. B 67, 235111 (2003)

    Google Scholar 

  58. J.H. Svensson, B. Monemar, E. Janzén, Pseudodonor electronic excited states of neutral complex defects in silicon. Phys. Rev. Lett. 65, 1796–1799 (1990)

    Google Scholar 

  59. K. Otha, Infrared absorption of gold in silicon single crystal. Sci. Light 22, 12 (1973)

    Google Scholar 

  60. T. Schlesinger, R. Hauenstein, R. Feenstra, T. McGill, Isotope shifts for the P, Q, R lines in indium-doped silicon. Solid State Commun. 46, 321–324 (1983)

    Google Scholar 

  61. M. do Carmo, M. Calão, G. Davies, E. Lightowlers, Photoluminescence from transition metals in silicon, in Defects in Semiconductors (Trans Tech, Aedermannsdorf, 1989), p. 1497

    Google Scholar 

  62. M. Henry, S. Daly, C. Frehill, E. McGlynn, C. McDonagh, A photoluminescence study of gold- and platinum-related defects in silicon using radioactive transformations, in Physics of Semiconductors: 23rd International Conference on the Physics of Semiconductors-ICPS, ed. by M. Scheffler, R. Zimmermann (1996), pp. 2713–2716

    Google Scholar 

  63. M. Henry, E. McGlynn, J. Fryar, S. Lindner, J. Bollmann, The evolution of point defects in semiconductors studied using the decay of implanted radioactive isotopes. Nucl. Instrum. Methods Phys. Res. B 178, 256–259 (2001)

    Google Scholar 

  64. R. Sauer, J. Weber, Photoluminescence characterisation of deep defects in silicon. Phys. B+C 116, 195 (1983)

    Google Scholar 

  65. K. Wünstel, P. Wagner, Interstitial iron and iron-acceptor pairs in silicon. Appl. Phys. A 27, 207–212 (1982)

    Google Scholar 

  66. K. Graff, H. Pieper, The properties of iron in silicon. J. Electrochem. Soc. 128, 669–674 (1981)

    Google Scholar 

  67. T.E. Schlesinger, T.C. McGill, Isotope-shift experiments on luminescence attributed to (Fe, B) pairs in silicon. Phys. Rev. B 28, 3643–3644 (1983)

    Google Scholar 

  68. H.D. Mohring, J. Weber, R. Sauer, Photoluminescence of excitons bound to an isoelectronic trap in silicon associated with boron and iron. Phys. Rev. B 30, 894–904 (1984)

    Google Scholar 

  69. H. Conzelmann, Photoluminescence of transition metal complexes in silicon. Appl. Phys. A 42, 1–18 (1987)

    Google Scholar 

  70. J. Kluge, W. Gehlhoff, J. Donecker, Combined EPR and luminescence investigations of centers in silicon associated with boron and iron. Acta Phys. Pol. A 73, 207 (1988)

    Google Scholar 

  71. G. Davies, M.C. do Carmo, Vibronic coupling in shallow excited states of optical centres in silicon. Inst. Phys. Conf. Ser. 95, 125–130 (1989)

    Google Scholar 

  72. A.A. Istratov, H. Hieslmair, E.R. Weber, Iron and its complexes in silicon. Appl. Phys. A 69, 13–44 (1999)

    Google Scholar 

  73. M. Henry, M. Deicher, R. Magerle, E. McGlynn, A. Stotzler, Photoluminescence analysis of semiconductors using radioactive isotopes. Hyperfine Interact. 129, 443–460 (2000)

    Google Scholar 

  74. M. Steger, A. Yang, T. Sekiguchi, K. Saeedi, M.L.W. Thewalt, M. O. Henry, K. Johnston, E. Alves, U. Wahl, H. Riemann, N.V. Abrosimov, M.F. Churbanov, A.V. Gusev, A.K. Kaliteevskii, O.N. Godisov, P. Becker, H.-J. Pohl, Isotopic fingerprints of Pt-containing luminescence centers in highly enriched \(^{28}\)Si. Phys. Rev. B 81, 235217 (2010)

    Google Scholar 

  75. E. Alves, J. Bollmann, M. Deicher, M.C. Carmo, M.O. Henry, M.H.A. Knopf, J.P. Leitao, R. Magerle, C.J. McDonagh, The photoluminescence of Pt-implanted silicon, in Defects in Semiconductors—ICDS-19, vol. 258–2, ed. by G. Davies, M.H. Nazare, Materials Science Forum (1997), pp. 473–478

    Google Scholar 

  76. J.P. Leitão, M.C. Carmo, M.O. Henry, E. McGlynn, J. Bolmann, S. Lindner, The 777 meV photoluminescence band in Si:Pt. Phys. B 273–274, 420–423 (1999)

    Google Scholar 

  77. M. Steger, A. Yang, T. Sekiguchi, K. Saeedi, M. Thewalt, M. Henry, K. Johnston, H. Riemann, N. Abrosimov, M. Churbanov, A. Gusev, A. Bulanov, I. Kaliteevski, O. Godisov, P. Becker, H.-J. Pohl, Isotopic fingerprints of gold-containing luminescence centers in \(^{28}\)Si. Phys. B 404, 5050–5053 (2009)

    Google Scholar 

  78. T.G. Brown, D.G. Hall, Optical emission at 1.32 \(\mu {\rm {m}}\) from sulfur-doped crystalline silicon. Appl. Phys. Lett. 49, 245–247 (1986)

    Google Scholar 

  79. D.J.S. Beckett, M.K. Nissen, M.L.W. Thewalt, Optical properties of the sulfur-related isoelectronic bound excitons in Si. Phys. Rev. B 40, 9618–9625 (1989)

    Google Scholar 

  80. M. Singh, E.C. Lightowlers, G. Davies, C. Jeynes, K.J. Reeson, Isoelectronic bound exciton photoluminescence from a metastable defect in sulphur-doped silicon. Mater. Sci. Eng. B 4, 303–307 (1989)

    Google Scholar 

  81. A.M. Frens, M.T. Bennebroek, J. Schmidt, W.M. Chen, B. Monemar, Zero-field optical detection of magnetic resonance on a metastable sulfur-pair-related defect in silicon: Evidence for a Cu constituent. Phys. Rev. B 46, 12316–12322 (1992)

    Google Scholar 

  82. P.W. Mason, H.J. Sun, B. Ittermann, S.S. Ostapenko, G.D. Watkins, L. Jeyanathan, M. Singh, G. Davies, E.C. Lightowlers, Sulfur-related metastable luminescence center in silicon. Phys. Rev. B 58, 7007–7019 (1998)

    Google Scholar 

  83. A.M. Frens, M.E. Braat, J. Schmidt, W.M. Chen, B. Monemar, Transfer mechanism between pseudodonor excited singlet and triplet states of the S-Cu complex defect in silicon. Phys. Rev. B 52, 8848–8853 (1995)

    Google Scholar 

  84. P.L. Bradfield, T.G. Brown, D.G. Hall, Radiative decay of excitons bound to chalcogen-related isoelectronic impurity complexes in silicon. Phys. Rev. B 38, 3533–3536 (1988)

    Google Scholar 

  85. E.S. Johnson, W.D. Compton, J.R. Noonan, B.G. Streetman, Recombination luminescence from electron-irradiated Li-diffused Si. J. Appl. Phys. 44, 5411–5418 (1973)

    Google Scholar 

  86. L. Canham, G. Davies, E. Lightowlers, The 1.045 eV vibronic band in silicon doped with lithium. J. Phys. C Solid State Phys. 13, L757 (1980)

    Google Scholar 

  87. L. Canham, G. Davies, E. Lightowlers, The 1.045 eV vibronic band in irradiated silicon doped with lithium. Inst. Phys. Conf. Ser. 59, 211–216 (1981)

    Google Scholar 

  88. G.G. DeLeo, W.B. Fowler, G.D. Watkins, Electronic structure of hydrogen- and alkali-metal-vacancy complexes in silicon. Phys. Rev. B 29, 1819–1823 (1984)

    Google Scholar 

  89. E.C. Lightowlers, L.T. Canham, G. Davies, M.L.W. Thewalt, S.P. Watkins, Lithium and lithium-carbon isoelectronic complexes in silicon: luminescence-decay-time, absorption, isotope-splitting, and Zeeman measurements. Phys. Rev. B 29, 4517–4523 (1984)

    Google Scholar 

  90. G. Davies, L. Canham, E. Lightowlers, Magnetic and uniaxial stress perturbations of optical transitions at a four Li atom complex in Si. J. Phys. C 17, L173–L178 (1984)

    Google Scholar 

  91. E. Tarnow, Theory of Li- and Br-saturated vacancies in radiation damaged silicon. J. Phys. Condens. Mater. 4, 1459–1464 (1992)

    Google Scholar 

  92. L. Canham, G. Davies, E. Lightowlers, G. Blackmore, Complex isotope splitting of the no-phonon lines associated with exciton decay at a four-lithium-atom isoelectronic centre in silicon. Phys. B 117–118, 119–121 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Steger .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steger, M. (2013). History of the Observed Centres in Silicon. In: Transition-Metal Defects in Silicon. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35079-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35079-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35078-8

  • Online ISBN: 978-3-642-35079-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics