Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 755 Accesses

Abstract

In statistics, there are two schools of thought about the exact nature of probability, one being the Frequentist school which defines probability as ‘the ratio of the times the event occurs in a test series to the total number of trials in the series’ [1], or the ‘frequencies of outcomes in random experiments’ [2] the other being the Bayesian school of thought which defines probability as ‘a measure of the degree of belief that an event will occur’ [1]. In my work in cosmological parameter inference and model selection I adopt a Bayesian approach, partly as it allows for a more holistic approach to solving problems involving probability, and partly as it allows us to explicitly include in the probability, information based on our prior experience and physical understanding of the situation. Rather than a collection of statistical tests, a Bayesian approach to probability provides a more flexible framework within which to construct solutions to problems of parameter inference and model selection. Standard texts describing Bayeisan statistical methods used in this research include [3-6] for Bayesian statistics in the cosmological context see especially [7-9]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Agostini, G.: 1995, arXiv:hep-ph/9512295

    Google Scholar 

  2. Mackay, D. J. C.: 2003, Information theory, Inference and learning algorithms

    Google Scholar 

  3. Jaynes, E. T., and Baierlein, R.: 2004, Physics Today, 57(10), 100000

    Google Scholar 

  4. Gregory, P. C.: 2005, Bayesian logical data analysis for the physical sciences: a comparative approach with ‘Mathematica’ support, Cambridge University Press

    Google Scholar 

  5. Sivia, D., Skilling, J., Sivia, D., and Skilling, J.: 2006, Data analysis, a Bayesian tutorial, Oxford University Press

    Google Scholar 

  6. Box, G., and Tiao, G.: 1992, Bayesian inference in statistical analysis, Wiley classics library, Wiley

    Google Scholar 

  7. Hobson, M. P., Jaffe, A. H., Liddle, A. R., Mukeherjee, P., & Parkinson, D. (ed.): 2010, Bayesian methods in cosmology, Cambridge University Press

    Google Scholar 

  8. Trotta, R.: 2008, Contemporary physics, 49, 71

    Google Scholar 

  9. Loredo, T. J.: 1990, From laplace to supernova Sn 1987a: Bayesian inference in astrophysics

    Google Scholar 

  10. Bellhouse, D.: 2004, Stat. Sci., 19(1), 3

    Google Scholar 

  11. Riley, Hobson, B.: 2004, Mathmatical methods for physics and engineering, Cambridge University Press

    Google Scholar 

  12. Gordon, C., and Trotta, R.: 2007, MNRAS, 382, 1859

    Google Scholar 

  13. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.: 1953, J. Chem. Phys., 21, 1087

    Google Scholar 

  14. Hastings, W. K.: 1970, Biometrika 57(1), 97

    Google Scholar 

  15. Skilling, J. (ed.): 2004, Nested Sampling, Vol. 735 of American Institute of Physics Conference Series

    Google Scholar 

  16. Skilling, J.: 2006, Bayesian Analysis, 1, 833

    Google Scholar 

  17. Lewis, A. and Bridle, S.: 2002, PhysRevD 66(10), 103511

    Google Scholar 

  18. Dunkley, J., Komatsu, E., Nolta, M. R., Spergel, D. N., Larson, D., Hinshaw, G., Page, L., Bennett, C. L., Gold, B., Jarosik, N., Weiland, J. L., Halpern, M., Hill, R. S., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S., Wollack, E., and Wright, E. L.: 2009, ApJS 180, 306

    Google Scholar 

  19. Lewis, A., Challinor, A., and Lasenby, A.: 2000, APJ 538, 473

    Google Scholar 

  20. Seljak, U. and Zaldarriaga, M.: 1996, APJ 469, 437

    Google Scholar 

  21. Feroz, F. and Hobson, M. P.: 2008a, 384, 449

    Google Scholar 

  22. Feroz, F., Hobson, M. P., and Bridges, M. (2009a), MNRAS 398, 449

    Google Scholar 

  23. Mukherjee, P., Parkinson, D.,and Liddle, A. R.: (2006), ApJL 638, L51

    Google Scholar 

  24. Parkinson, D., Mukherjee, P., and Liddle, A. R.: 2006, PhysRevD 73(12), 123523

    Google Scholar 

  25. Bassett, B. A., Fantaye, Y., Hlozek, R., and Kotze, J.: 2009a, arXiv:0906.0993

    Google Scholar 

  26. Bassett, B. A., Fantaye, Y., Hlozek, R., and Kotze, J.: 2009b, arXiv0906.0974

    Google Scholar 

  27. Amendola, L. and Tsujikawa, S.: 2010, Dark Energy: Theory and Observations,Cambridge University Press

    Google Scholar 

  28. Albrecht, A. et al.: 2006, astro-ph/0609591

    Google Scholar 

  29. Williams, D.: 2001, Weighing the odds: a course in probability and statistics, Cam- bridge University Press

    Google Scholar 

  30. Frodesen, A., Skjeggestad, O., and Tofte, H.: 1979, Probability and statistics in particle physics, No. v. 1 in Probability and Statistics in Particle Physics, Universitetsforl.

    Google Scholar 

  31. Young, G. and Smith, R.: 2005, Essentials of statistical inference: G.A. Young, R.L. Smith, Cambridge series on statistical and probabilistic mathematics, Cambridge University Press

    Google Scholar 

  32. Wilks, S. S. (1938). The annals of mathematical statistics, 9(1), 60

    Google Scholar 

  33. Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L., and Siemiginowska,A.: 2002, ApJ 571, 545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Cristina March .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

March, M.C. (2013). Statistical Techniques. In: Advanced Statistical Methods for Astrophysical Probes of Cosmology. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35060-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35060-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35059-7

  • Online ISBN: 978-3-642-35060-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics