Skip to main content

Dark Energy and Apparent Late Time Acceleration

  • Chapter
  • First Online:
Advanced Statistical Methods for Astrophysical Probes of Cosmology

Part of the book series: Springer Theses ((Springer Theses))

  • 704 Accesses

Abstract

Astrophysical observations suggest that the expansion of the Universe is accelerating. This cannot be explained by matter, either ordinary or dark since matter is gravitationally attractive and would lead to deceleration not acceleration. Instead, another explanation must be sought.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amendola, L. and Tsujikawa, S.: 2010, Dark Energy: Theory and Observations, Cambridge University Press

    Google Scholar 

  2. Ruiz-Lapuente, P. (ed.). (2010). Dark energy: Observational and theoretical approaches, Cambridge University Press.

    Google Scholar 

  3. Peebles, P. J. and Ratra, B.: 2003, Reviews of Modern Physics 75, 559

    Google Scholar 

  4. Tsujikawa, S.: 2010, ArXiv e-prints

    Google Scholar 

  5. Frieman, J. A., Turner, M. S., and Huterer, D.: 2008, ARA & A 46, 385

    Google Scholar 

  6. Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B., and Tonry, J.: 1998, AJ 116, 1009

    Google Scholar 

  7. Perlmutter, S., Turner, M. S., and White, M.: 1999b, PhysRevLet 83, 670

    Google Scholar 

  8. Casimir, H. B. G.: 1948, Indag. Math. 10, 261

    Google Scholar 

  9. Bordag, M., Mohideen, U., and Mostepanenko, V. M.: 2001, Physics Reports 353, 1

    Google Scholar 

  10. Peskin, M., Schroeder, D., and Martinec, E.: 1996, An Introduction to Quantum Field Theory, Addison-Wesley Advanced Book Program

    Google Scholar 

  11. Weinberg, S.: 1989, Reviews of Modern Physics 61, 1.

    Google Scholar 

  12. Caldwell, R. R.: 2002, Physics Letters B 545, 23

    Google Scholar 

  13. Kunz, M. and Sapone, D.: 2006, PhysRevD 74(12), 123503

    Google Scholar 

  14. Chevallier, M. and Polarski, D.: 2001, Int. J. Mod. Phys. D10, 213

    Google Scholar 

  15. Linder, E. V.: 2003, PhysRevLet 90, 091301

    Google Scholar 

  16. Copeland, E. J., Sami, M., and Tsujikawa, S.: 2006, International Journal of Modern Physics D 15, 1753

    Google Scholar 

  17. Clifton, T., Ferreira, P. G., Padilla, A., and Skordis, C.: 2011, ArXiv e-prints

    Google Scholar 

  18. Laureijs, R. et al.: 2009, arXiv:0912.0914

    Google Scholar 

  19. Green, J., Schechter, P., Baltay, C., Bean, R., Bennett, D., Brown, R., Conselice, C., Donahue, M., Gaudi, S., Lauer, T., Perlmutter, S., Rauscher, B., Rhodes, J., Roellig, T., Stern, D., Sumi, T., Tanner, A., Wang, Y., Wright, E., Gehrels, N., Sambruna, R., and Traub, W.: 2011, arXive:1108.1374s

    Google Scholar 

  20. Bondi, H.: 1947, MNRAS 107, 410

    Google Scholar 

  21. Tolman, R. C.: 1934, Proceedings of the National Academy of Science 20, 169

    Google Scholar 

  22. Enqvist, K.: 2008, General Relativity and Gravitation 40, 451

    Google Scholar 

  23. Marra, V., Kolb, E. W., Matarrese, S., and Riotto, A.: 2007, PhysRevD 76(12), 123004

    Google Scholar 

  24. Clarkson, C.: 2009, arXive:0911.2601

    Google Scholar 

  25. Rasanen, S.: 2010, arXive:1012.0784

    Google Scholar 

  26. Kolb, E. W., Matarrese, S., Notari, A., and Riotto, A.: 2005, PhysRevD 71(2), 023524

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Cristina March .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

March, M.C. (2013). Dark Energy and Apparent Late Time Acceleration. In: Advanced Statistical Methods for Astrophysical Probes of Cosmology. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35060-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35060-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35059-7

  • Online ISBN: 978-3-642-35060-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics