Advertisement

The Boar Ejaculate: Sperm Function and Seminal Plasma Analyses

  • Sílvia SanchoEmail author
  • Ingrid Vilagran
Chapter

Abstract

A complete study of the boar ejaculate includes both routine sperm quality analysis and complementary tests of sperm function. Rigorous monitoring of both steps permits the fertilising ability of a given ejaculate to be predicted as accurately as possible. With regard to quality analysis and after successfully carrying out a macroscopic inspection of semen (volume, temperature, pH and osmolality), the technician proceeds with a microscope analysis that includes the study of the following relevant semen parameters: concentration, motility, morphology, plasma membrane integrity and osmotic resistance of spermatozoa. This chapter also reviews those tests that assess additional features of the sperm cell, such as its capacitation status, its nuclear integrity and that of its membranes, and also provides information on in vitro fertility assays as estimators of in vivo sperm fertility. Finally, the chapter outlines the main components of seminal plasma and the most important methods in their study.

Keywords

Sperm Cell Sperm Motility Seminal Plasma Zona Pellucida Sperm Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abaigar T, Holt WV, Harrison RA, del Barrio G (1999) Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments. Biol Reprod 60:32–41PubMedGoogle Scholar
  2. Abu-Hassan D, Koester F, Shoepper B, Schultze-Mosgau A, Asimakopoulos B, Diedrich K, Al-Hasani S (2006) Comet assay of cumulus cells and spermatozoa DNA status, and the relationship to oocyte fertilization and embryo quality following ICSI. Reprod Biomed Online 12(4):447–452PubMedGoogle Scholar
  3. Aitken RJ, Buckingham DW, West KM (1992) Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. J Cell Physiol 151(3):466–477PubMedGoogle Scholar
  4. Aitken RJ (1995) Free radicals, lipid peroxidation and sperm function. Reprod Fertil Dev 7(4):659–668PubMedGoogle Scholar
  5. Aitken RJ, Baker MA, De Iuliis GN, Nixon B (2010) New insights into sperm physiology and pathology. Handb Exp Pharmacol 198:99–115PubMedGoogle Scholar
  6. Amann RP, Hammerstedt RH (1993) In vitro evaluation of sperm quality: an opinion. J Androl 14(6):397–406PubMedGoogle Scholar
  7. Am-in N, Kirkwood RN, Techakumphu M, Tantasuparuk W (2011) Lipid profiles of sperm and seminal plasma from boar having normal or low sperm motility. Theriogenology 75(5):897–903PubMedGoogle Scholar
  8. Andolz P, Bielsa MA (1995) Semen Humano. Garsi, Madrid, SpainGoogle Scholar
  9. Anzar M, Kroetsch T, Buhr MM (2009) Comparison of different methods for assessment of sperm concentration and membrane integrity with bull semen. J Androl 30(6):661–668PubMedGoogle Scholar
  10. Aparicio IM, Bragado MJ, Gil MC, Garcia-Herreros M, Gonzalez-Fernandez L, Tapia JA, Garcia-Marin LJ (2007) Porcine sperm motility is regulated by serine phosphorylation of the glycogen synthase kinase-3alpha. Reproduction 134(3):435–444PubMedGoogle Scholar
  11. Assreuy AMS, Alencar NMN, Cavada BS, Rocha-Filho DR, Feitosa RFG, Cunha FQ, Calvete JJ, Riberio RA (2003) Porcine spermadhesin PSP-I/PSP-II stimulates macrophages to release a neutrophil chematactic substance: modulation by mast cells. Biol Reprod 68:1836–1841PubMedGoogle Scholar
  12. Awda BJ, Mackenzie-Bell M, Buhr MM (2009) Reactive oxygen species and boar sperm function. Biol Reprod 81:553–561PubMedGoogle Scholar
  13. Baldi E, Luconi M, Bonaccorsi L, Forti G (2002) Signal transduction pathways in human spermatozoa. J Reprod Immunol 53(1–2):121–131PubMedGoogle Scholar
  14. Barrios B, Pérez-Pé R, Gallego M, Tato A, Osada J, Muiño-Blanco T, Cebrián-Pérez JA (2000) Seminal plasma proteins revert the cold-shock damage on ram sperm membrane. Biol Reprod 63(5):1531–1537PubMedGoogle Scholar
  15. Berger T, Horton MB (1988) Evaluation of assay conditions for the zona-free hamster ova bioassay of boar sperm fertility. Gamete Research 19(1):101–111PubMedGoogle Scholar
  16. Berger T, Parker K (1989) Modification of the zona-free hamster ova bioassay of boar sperm fertility and correlation with in vivo fertility. Gamete Res 22(4):385–397PubMedGoogle Scholar
  17. Berger T, Anderson DL, Penedo MCT (1996) Porcine sperm fertilization potential in relationship to sperm functional capacities. Anim Reprod Sci 44:231–239Google Scholar
  18. Bonde JP, Ernst E, Jensen TK, Hjollund NH, Kolstad H, Henriksen TB, Scheike T, Giwercman A, Olsen J, Skakkebaek NE (1998) Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet 352:1172–1177PubMedGoogle Scholar
  19. Bonet S, Briz M, Pinart E, Camps R, Fradera A, Casadevall M (1995) Light microscopy characterization of sperm morphology. Microsc Anal 9:29–31Google Scholar
  20. Bonet S, Martínez E, Rodríguez JE, Barrera X (2006) Biotecnología de la Reproducción Porcina. Manual de Técnicas de Reproducción Asistida en Porcino. Ed. Universitat de Girona y Red Temática de la Reproducción PorcinaGoogle Scholar
  21. Brahmkshtri BP, Edwin MJ, John MC, Nainar AM, Krishnan AR (1999) Relative efficacy of conventional sperm parameters and sperm penetration bioassay to assess bull fertility in vitro. Anim Reprod Sci 54(3):159–168PubMedGoogle Scholar
  22. Bravo PW, Moscoso R, Alarcon V, Ordoñez C (2002) Ejaculatory process and related semen characteristics. Arch Androl 48(1):65–72PubMedGoogle Scholar
  23. Brazil C, Swan SH, Tollner CR, Treece C, Drobnis EZ, Wang C (2004) Quality control of laboratory methods for semen evaluation in a multicenter research study. J Androl 25:645–656PubMedGoogle Scholar
  24. Briz MD (1994) Anàlisi microscòpica de l’esperma ejaculada i de la maduració epidimària dels espermatozoides de Sus domesticus. Doctoral Thesis. University of Girona, SpainGoogle Scholar
  25. Briz MD, Bonet S, Pinart B, Egozcue J, Camps R (1995) Comparative study of boar sperm coming from the caput, corpus, and cauda regions of the epididymis. J Androl 16(2):175–188Google Scholar
  26. Brown CR, Clarke N, Aiken M, Bavister BD (1990) Changes in the composition of the hamster zona pellucida after fertilization in vivo but not in vitro. J Reprod Fertil 90(2):447–454PubMedGoogle Scholar
  27. Bussalleu E, Pinart E, Yeste M, Briz M, Sancho S, Garcia-Gil N, Badia E, Bassols J, Pruneda A, Casas I, Bonet S (2005) Development of a protocol for multiple staining with fluorochromes to assess the functional status of boar spermatozoa. Microsc Res Tech 68(5):277–283PubMedGoogle Scholar
  28. Buxadé C (1984) Ganado Porcino. Sistemas de Explotación y Técnicas de Producción. Mundi-Prensa. Madrid, SpainGoogle Scholar
  29. Caballero I, Vazquez JM, Centurión F, Rodríguez-Martinez H, Parrilla I, Roca J, Cuello C, Martinez EA (2004) Comparative effects of autologous and homologous seminal plasma on the viability of largely extended boar spermatozoa. Reprod Domest Anim 39(5):370–375PubMedGoogle Scholar
  30. Cadenas E, Davies KJ (2000) 2000 Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biology Medicine 29(3–4):222–230Google Scholar
  31. Cai K, Yang J, Guan M, Ji W, Li Y, Rens W (2005) Single UV excitation of Hoechst 33342 and propidium iodide for viability assessment of rhesus monkey spermatozoa using flow cytometry. Arch Androl 51:371–383PubMedGoogle Scholar
  32. Calvete JJ, Mann K, Schäfer W, Raida M, Sanz L, Töpfer-Petersen E (1995) Boar spermadhesin PSP-II: location of posttranslational modifications, heterodimer formation with PSP-I glyocoforms and effect of dimerization on the ligand—binding capabilities of the subunits. FEBS Lett 365:179–182PubMedGoogle Scholar
  33. Calvete JJ, Töpfer-Petersen E, Sanz L (1996) Spermadhesins: a novel class of mammalian lectins? In: Van Driessche E, Rouge P, Beeckmans S, Bog-Hansen TC (eds) Lectins: biology Biochemistry Clinical Biochemistry, Textop Helkrup pp 185–192Google Scholar
  34. Camus A, Camugli S, Lévêque C, Schmitt E, Staub C (2011) Is photometry an accurate and reliable method to assess boar concentration? Theriogenology 75:577–583PubMedGoogle Scholar
  35. Cao W, Haig-Ladewig L, Gerton GL, Moss SB (2006) Adenylate kinases 1 and 2 are part of the accessory structures in the mouse sperm flagellum. Biol Reprod 75(4):492–500PubMedGoogle Scholar
  36. Casas I, Sancho S, Briz M, Pinart E, Bussalleu E, Yeste M, Bonet S (2009) Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins. Theriogenology 72(7):930–948PubMedGoogle Scholar
  37. Casas I, Sancho S, Briz M, Pinart E, Bussalleu E, Yeste M, Bonet S (2010) Fertility after post-cervical artificial insemination with cryopreserved sperm from boar ejaculates of good and poor freezability. Anim Reprod Sci 118(1):69–76PubMedGoogle Scholar
  38. Centurion F, Vazquez JM, Calvete JJ, Roca J, Sanz L, Parrilla I, Garcia EM, Martinez EA (2003) Influence of porcine spermadhesins on the susceptibility of boar spermatozoa to high dilution. Biol Reprod 69(2):640–646PubMedGoogle Scholar
  39. Chan WH (2006) Ginkgolide B induces apoptosis and developmental injury in mouse embryonic stem cells and blastocysts. Hum Reprod 21(11):2985–2995PubMedGoogle Scholar
  40. Chantler E, Abraham-Peskir JV (2004) Significance of midpiece vesicles and functional integrity of the membranes of human spermatozoa after osmotic stress. Andrología 36(2):87–93PubMedGoogle Scholar
  41. Christensen P, Stryhn H, Hansen C (2005) Discrepancies in the determination of sperm concentration using Bürker-Türk, Thoma and Makler counting chambers. Theriogenology 63:992–1003PubMedGoogle Scholar
  42. Christova Y, James PS, Cooper TG, Jones R (2002) Lipid diffusion in the plasma membrane of mouse spermatozoa: changes during epididymal maturation, effects of pH, osmotic pressure, and knockout of the c-ros gene. J Androl 23(3):384–392PubMedGoogle Scholar
  43. Clarke RN, Johnson LA (1987) Effect of liquid storage and cryopreservation of boar spermatozoa on acrosomal integrity and the penetration of zona-free hamster ova in vitro. Gamete Res 16(3):193–204PubMedGoogle Scholar
  44. Collins ED, Flowers WL, Shanks RD, Miller DJ (2008) Porcine sperm zona binding ability as an indicator of fertility. Anim Reprod Sci 104(1):69–82PubMedGoogle Scholar
  45. Comhaire F, Schoonjans F, Vermeulen L, De Clerck N (1994) Methodological aspects of sperm morphology evaluation: comparison between strict and liberal criteria. Fertil Steril 62(4):857–861PubMedGoogle Scholar
  46. Cordova-Izquierdo A, Muñoz-Mendoza R, Córdova-Jiménez S, Córdova-Jiménez A, Pérez-Gutiérrez JF (2004) Características del semen de verraco y su evaluación práctica. PorcinoculturaGoogle Scholar
  47. Coy P, Romar R, Ruiz S, Cánovas S, Gadea J, García Vázquez F, Matás C (2005) Birth of piglets after transferring of in vitro-produced embryos pre-matured with R-roscovitine. Reproduction 129(6):747–55Google Scholar
  48. Cox JF, Zavala A, Saravia F, Rivas C, Gallardo P, Alfaro V (2002) Differences in sperm migration through cervical mucus in vitro relates to sperm colonization of the oviduct and fertilizing ability in goats. Theriogenology 58:9–18PubMedGoogle Scholar
  49. Crabo BG (1997) Reproductive examination and evaluation of the boar. In: Youngquist RS (ed) Current therapy in large animal theriogenology. W.B. Sauders Company, PhiladelphiaGoogle Scholar
  50. Cupps PT (1991) Reproduction in domestic animals, 4th edn. Academic, New YorkGoogle Scholar
  51. Curry MR, Watson PF (1994) Osmotic effects on ram and human sperm membranes in relation on thawing injury. Cryobiology 31:39–46PubMedGoogle Scholar
  52. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10(9):369–377PubMedGoogle Scholar
  53. Didion BA, Kasperson KM, Wixon RL, Evenson DP (2009) Boar fertility and sperm chromatin structure status: a retrospective report. J Androl 30(6):655–660PubMedGoogle Scholar
  54. Dott HM, Foster GC (1972) A technique for studying the morphology of mammalian spermatozoa which are eosinophilic in a differential life dead stain. J Reprod Fertil 29:443PubMedGoogle Scholar
  55. Dunphy BC, Kay R, Barratt CC, Cooke ID (1989) Quality control during the conventional analysis of semen, an essential exercise. J Androl 10:385–387Google Scholar
  56. Enciso M, López-Fernández C, Fernández JL, García P, Gosálbez A, Gosálvez J (2006) A new method to analyze boar sperm DNA fragmentation under bright-field or fluorescence microscopy. Theriogenology 65:308–316PubMedGoogle Scholar
  57. Enciso M, Johnston SD, Gosálvez J (2011) Differential resistance of mammalian sperm chromatin to oxidative stress as assessed by two-tailed comet assay. Reprod Fertility Dev 23(5):633–637Google Scholar
  58. Erkkila K, Kyttanen S, Wikstrom M, Taari K, Hikim AP, Swerdloff RS, Dunkel L (2006) Regulation of human male germ cell death by modulators of ATP production. Am J Physiol Endocrinol Metab 290(6):E1145–E1154PubMedGoogle Scholar
  59. Eustache F, Auger J (2003) Inter-individual variability in the morphological assessment of human sperm: effect of the level of experience and the use of standard methods. Hum Reprod 18(5):1018–1022PubMedGoogle Scholar
  60. Evenson DP, Darzynkiewicz Z, Melamed MR (1980) Relation of mammalian sperm chromatin heterogeneity to fertility. Science 210(4474):1131–1133PubMedGoogle Scholar
  61. Evenson D, Lorna J (2000) Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci 22:169–189PubMedGoogle Scholar
  62. Evenson D, Jost L (2001) Sperm chromatin structure assay for fertility assessment current protocol cytometry, 7.13Google Scholar
  63. Evenson DP, Larson KL, Jost LK (2002) Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 23(1):25–43PubMedGoogle Scholar
  64. Fazeli A, Duncan AE, Watson PF, Holt WV (1999) Sperm-Oviduct interaction: induction of capacitation and preferential binding of uncapacitated spermatozoa to oviductal epithelial cells in porcine species. Biol Reprod 60:886–897Google Scholar
  65. Fazeli A, Elliot RM, Duncan AE, Moore A, Watson PF, Holt WV (2003) In vitro maintenance of boar sperm viability by a soluble fraction obtained from oviductal plasma membrane preparations. Reproduction 125:509–517PubMedGoogle Scholar
  66. Fernández JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG (2003) The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl 24(1):59–66PubMedGoogle Scholar
  67. Flesch FM, Colenbrander B, van Golde LM, Gadella BM (1999) Capacitation induces tyrosine phosphorylation of proteins in the boar sperm plasma membrane. Biochem Biophy Res Commun 262(3):787–792Google Scholar
  68. Flowers WL (1997) Management of boar for efficient semen productions. J Reprod Fertil Suppl 52:67–78PubMedGoogle Scholar
  69. Flores E, Cifuentes D, Fernández-Novell JM, Medrano A, Bonet S, Briz MD, Pinart E, Peña A, Rigau T, Rodríguez-Gil JE (2008) Freeze-thawing induces alterations in the protamine-1/DNA overall structure in boar sperm. Theriogenology 69(9):1083–1094PubMedGoogle Scholar
  70. Flores E, Fernández-Novell JM, Peña A, Rigaud T, Rodríguez-Gil JE (2010) Cryopreservation-induced alterations in boar spermatozoa mitochondrial function are related to changes in the expression and location of midpiece mitofusin-2 and actin network. Theriogenology 74(3):354–363PubMedGoogle Scholar
  71. Flores E, Ramió-Lluch L, Tucci D, Fernádez-Novell JM, Peña A, Rodriguez-Gil JE (2011) Freezing-thawing induces alterations in histone H1-DNA binding and the breaking of proteína-DNA disulfide bonds in boar sperm. Theriogenology 76(8):1450–1464PubMedGoogle Scholar
  72. Foote RH (2002) Within-herd use of boar semen at 5 degrees C, with a note on electronic monitoring of oestrus. Reprod Domest Anim 37(1):61–63PubMedGoogle Scholar
  73. Fournier-Delpech S, Thibault C (1993) Acquisition of sperm fertility. In: Thibault C, Levasseur MC, Hunter RHF (eds) Reproduction in mammals and mann, Ellipses, Paris, pp 369–386Google Scholar
  74. Foxcroft GR, Dyck MK, Ruiz-Sanchez A, Novak S, Dixon WT (2008) Identifying useable semen. Theriogenology 70:1324–1336PubMedGoogle Scholar
  75. Fraser L, Gorszczaruk K, Strzezek J (2001) Relationship between motility and membrane integrity of boar spermatozoa in media varying in osmolality. Reprod Domest Anim 36(6):325–329PubMedGoogle Scholar
  76. Fraser L, Strzezek J (2007) Is there a relationship between the chromatin status and DNA fragmentation of boar spermatozoa following freezing-thawing? Theriogenology 68(2):248–257PubMedGoogle Scholar
  77. Fukami K, Yoshida M, Inoue T, Kurokawa M, Fissore RA, Yoshida N, Mikoshiba K, Takenawa T (2003) Phospholipase Cdelta4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J Cell Biol 161:79–88PubMedGoogle Scholar
  78. Gadea J, Matás C, Lucas X (1998) Prediction of porcine semen fertility by homologous in vitro penetration (hIVP) assay. Anim Reprod Sci 54(2):95–108PubMedGoogle Scholar
  79. Gadea J (2005) Sperm factors related to in Vitro and in vivo porcine fertility. Theriogenology 63:431–444PubMedGoogle Scholar
  80. Gadea J, Gumbao D, Cánovas S, García-Vázquez FA, Grullón LA, Gardón JC (2008) Supplementation of the dilution medium after thawing with reduced glutathione improves function and the in vitro fertilizing ability of frozen-thawed bull spermatozoa. Int J Androl 31(1):40–49PubMedGoogle Scholar
  81. Galantino-Homer HL, Visconti PE, Kopf GS (1997) Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3′5′-monophosphate-dependent pathway. Biol Reprod 56(3):707–719PubMedGoogle Scholar
  82. Garcia-Artiga C, Fontanillos JC, Pérez J, García-Cuenca I, Martín S, Pérez-García T (1994) Técnicas de tinción espermática. Tratado de Ganado Porcino 21:11–18Google Scholar
  83. Garcia-Hernandez EM (2007) Analysis, function and biotechnological applications of boar seminal plasma proteins PSP-I and PSP-II. Doctoral ThesisGoogle Scholar
  84. Garcia-Macias V, Martinez-Pastor F, Alvarez M, Garde JJ, Anel E, Anel L, de Paz P (2006) Assessment of chromatin status (SCSA®) in epididymal and ejaculated sperm in Iberian red deer, ram and domestic dog. Theriogenology 66:1921–1930PubMedGoogle Scholar
  85. Garner DL, Johnson LA, Yue ST, Roth BL, Haugland RP (1994) Dual DNA staining assessment of bovine sperm viability using SYBR-14 and propidium iodide. J Androl 15:620–629PubMedGoogle Scholar
  86. Garner DL, Johnson LA (1995) Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol Reprod 53(2):276–284PubMedGoogle Scholar
  87. Garner DL, Hafez ESE (1996) Espermatozoides y Plasma seminal. In: Hafez ESE (ed) Reproducción e Inseminación Artificial en Animales, 6th edn. McGraw-Hill Interamericana, México, D.F. México, pp 158–179Google Scholar
  88. Garner EC, Campbell CS, Mullins RD (2004) Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science 306(5698):1021–1025PubMedGoogle Scholar
  89. Gil MA, Almiñana C, Cuello C, Parrilla I, Roca J, Vazquez JM, Martinez EA (2007) Brief coincubation of gametes in porcine in vitro fertilization: role of sperm: oocyte ratio and post-coincubation medium. Theriogenology 67(3):620–626PubMedGoogle Scholar
  90. Gillan L, Evans G, Maxwell WM (2005) Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology 63(2):445–457PubMedGoogle Scholar
  91. Gilmore K, Wilson M (1999) The use of chloromethyl-X-rosamine (Mitotracker red) to measure loss of mitochondrial membrane potential in apoptotic cells is incompatible with cell fixation. Cytometry 36(4):355–358PubMedGoogle Scholar
  92. González-Urdiales R, Tejerina F, Dominguez JC, Alegre B, Ferreras A, Peláez J, Bernal S, Cárdenas S (2006) Técnicas de análisis rutinario de la calidad espermática: motilidad, vitalidad, concentración, resistencia osmótica y morfología espermática. In: Bonet S, Martínez EA, Rodríguez-Gil JE, Barrera X (eds) Manual de Técnicas de Reproducción Asistida en Porcino. Universitat de Girona. Red Temática Nacional de Reproducción Porcina. Girona, SpainGoogle Scholar
  93. Gonzalvez F, Gottlieb E (2007) Cardiolipin: setting the beat of apoptosis. Apoptosis 12(5):877–885PubMedGoogle Scholar
  94. Gorczyka W, Gong J, Darzynkiewicz Z (1993) Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl tranferase and nick translation assays. Cancer Res 53(8):1945–1951Google Scholar
  95. Gosalvez J, Lopez-Fernandez C, Fernandez JL, Gouraud A, Holt WV (2011) Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol Reprod Dev 78:951–961PubMedGoogle Scholar
  96. Gravance CG, Garner DL, Miller MG, Berger T (2000) Fluorescent probes and flow cytometry to assess rat sperm integrity and mitochondrial function. Reprod Toxicol 15:5–10Google Scholar
  97. Green CE, Bredl J, Holt WV, Watson PF, Fazeli A (2001) Carbohydrate mediation of boar sperm binding to oviductal epithelial cells in vitro. Reproduction 122(2):305–315PubMedGoogle Scholar
  98. Grimm S, Brdiczka D (2007) The permeability transition pore in cell death. Apoptosis 12(5):841–855PubMedGoogle Scholar
  99. Guthrie HD, Welch GR (2008) Determination of high mitochondrial membrane potential in spermatozoa loaded with the mitochondrial probe 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) by using fluorescence-activated flow cytometry. Methods Mol Biol 477:89–97PubMedGoogle Scholar
  100. Hallap T, Nagy S, Jaakma U, Johannisson A, Rodríguez-Martínez H (2006) Usefulness of a triple Fluorochrome combination Merocyanine 540/Yo-Pro 1/Hoechst 33342 in assessing membrane stability of viable frozen-thawed spermatozoa from Estonian Holstein AI bulls. Theriogenology 65:1122–1136PubMedGoogle Scholar
  101. Hanada A, Chang MC (1978) Penetration of the zona-free or intact eggs by foreign spermatozoa and the fertilization of deer mouse eggs in vitro. J Exp Zool 203(2):277–285PubMedGoogle Scholar
  102. Hansen C, Christensen P, Stryhn H, Hedeboe AM, Rode M, Boe-Hansen G (2002) Validation of the FACS AF system for determination of sperm concentration in boar semen. Reprod Dom Anim 37:330–334Google Scholar
  103. Harrison RA, Mairet B, Miller NG (1993) Flow cytometric studies of bicarbonate-mediated Ca2+ influx in boar sperm populations. Mol Reprod Dev 35(2):197–208PubMedGoogle Scholar
  104. Harrison RA, Ashworth PJ, Miller NG (1996) Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membranes. Mol Reprod Dev 45(3):378–391PubMedGoogle Scholar
  105. Harrison RA, Vickers SE (1990) Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. J Reprod Fertil 88(1):343–352PubMedGoogle Scholar
  106. Hernández M, Roca J, Ballester J, Vázquez JM, Martínez EA, Johannisson A, Saravia F, Rodríguez-Martínez H (2006) Differences in SCSA outcome among boars with different sperm freezability. Int J Androl 29(6):583–591PubMedGoogle Scholar
  107. Hewit DA, England GC (1998) An investigation of capacitation and the acrosome reaction in dog spermatozoa using a dual fluorescent staining technique. Anim Reprod Sci 51:321–332Google Scholar
  108. Hołody D, Strzezek J (1999) Heparin- and Zn2+-binding proteins from boar seminal plasma. Acta Biochim Pol 46(4):935–939PubMedGoogle Scholar
  109. Holt C, Holt W, Moore H, Reed H, Curnock R (1997) Objectively measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: results of two fertility trials. J Androl 18:312–323PubMedGoogle Scholar
  110. Holt WV, Harrison RAP (2002) Bicarbonate stimulation of boar sperm motility via a protein kinase A-dependent pathway between cell and between ejaculate differences are not protein kinase A activation. J Androl 23:557–565PubMedGoogle Scholar
  111. Holt WV (2005) Is quality assurance in semen analysis still really necessary? A spermatologist’s viewpoint. Human Reprod 20(11):2983–2986Google Scholar
  112. Holt WV, Elliott RM, Fazeli A, Sostaric E, Georgiou AS, Satake N, Prathalingam N, Watson PF (2006) Harnessing the biology of the oviduct for the benefit of artificial insemination. Soc Reprod Fertil Suppl 62:247–259PubMedGoogle Scholar
  113. Hornsby PJ, Didenko VV (2011) In situ ligation: a decade and a half of experience. Methods Mol Biol 682:49–63PubMedGoogle Scholar
  114. Hugues PE, Varley MA (1984) Reproducción del Cerdo. Acribia. Zaragoza, SpainGoogle Scholar
  115. Huo LJ, Ma XH, Yang ZM (2002) Assessment of sperm viability, mitochondrial activity, capacitation and acrosome intactness in extended boar semen during long-term storage. Theriogenology 58:1349–1360PubMedGoogle Scholar
  116. Imai H, Niwa K, Iritani A (1977) Penetration in vitro of zona-free hamster eggs by ejaculated boar spermatozoa. J Reprod Fertil 51(2):495–497PubMedGoogle Scholar
  117. Ivanova M, Mollova M (1993) Zona-penetration in vitro test for evaluating boar sperm fertility. Theriogenology 40(2):397–410PubMedGoogle Scholar
  118. Ivic A, Onyeaka H, Girling A, Brewis IA, Ola B, Hammadieh N, Papaioannou S, Barratt CL (2002) Critical evaluation of methylcellulose as an alternative medium in sperm migration tests. Hum Reprod 17(1):143–149PubMedGoogle Scholar
  119. Januskauskas A, Johannisson A, Söderquist L, Rodriguez-Martinez H (2000) Assessment of sperm characteristics post-thaw and response to calcium ionophore in relation to fertility in Swedish dairy AI bulls. Theriogenology 53(4):859–875PubMedGoogle Scholar
  120. Januskauskas A, Lukoseviciute K, Nagy S, Johannisson A, Rodriguez-Martinez H (2005) Assessment of the efficacy of Sephadex G-15 filtration of bovine spermatozoa for cryopreservation. Theriogenology 63(1):160–178PubMedGoogle Scholar
  121. Jeyendran RS, van der Ven HH, Pérez-Peláez M, Crabo BG, Zaneveld LJ (1984) Development of an asssay to assess the functional activity of the human sperm membrane and its relationship to other semen characteristics. J Reprod Fertil 70(1):219–228 Google Scholar
  122. Jiménez I, Gonzalez-Marquez H, Ortiz R, Betancourt M, Herrera J, Fierro R (2002) Expression of lectin receptors on the membrane surface of sperm of fertile and subfertile boars by flow cytometry. Arch Androl 48(2):159–166PubMedGoogle Scholar
  123. Johnson LA, Pursel VG, Gerrits RJ (1972) Total phospholipid and phospholipid fatty acids of ejaculated and epididimal semen and seminal vesicle fluids of boar. J Anim Sci 35(2):398–403PubMedGoogle Scholar
  124. Johnson LA, Weitze KF, Fiser P, Maxwell WMC (2000) Storage of boar semen. Anim Reprod Sci 62:143–172PubMedGoogle Scholar
  125. Kalab P, Peknicová J, Geussová G, Moos J (1998) Regulation of protein tyrosine phosphorylation in boar sperm through a cAMP-dependent pathway. Mol Reprod Dev 51(3):304–314PubMedGoogle Scholar
  126. Kalic M, Kamp G, Lauterwein J (1997) Nuclear magnetic resonance studies of boar seminal plasma. Problems encountered in the identification of small molecules: hypotaurine and carnitine. NMR Biomed 10(7): 341–347Google Scholar
  127. Kamp G, Lauterwein J (1995) Multinuclear magnetic resonance studies of boar seminal plasma. Biochim Biophys Acta 1243:101–109PubMedGoogle Scholar
  128. Kardivel G, Kumar S, Kumaresan A, Kathiravan P (2009) Capacitation status of fresh and frozen-thawed buffalo spermatozoa in relation to cholesterol level, membrane fluidity and intracellular calcium. Anim Reprod Sci 116(3–4):244–253Google Scholar
  129. Kashiwabara T, Tanaka R, Matsumoto T (1965) Tail to tail agglomeration of bull spermatozoa by phytoagglutinins present in soy-beans. Nature 207(999):831–832PubMedGoogle Scholar
  130. Kavac A, Johannisson A, Lundeheim N, Rodríguez-Martínez H, Aidnik M, Einarsson S (2003) Evaluation of cryopreserved stallion semen from Tori and Estonian breeds using CASA and flow cytometry. Anim Reprod Sci 76: 205–216Google Scholar
  131. Keij JF, Bell-Prince C, Steinkamp JA (2000) Staining of mitochondrial membranes with 10-nonyl acridine orange, MitoFluor Green, and MitoTracker Green is affected by mitochondrial membrane potential altering drugs. Cytometry 36:203–210Google Scholar
  132. Knobil E, Neil JD (1994) The physiology of reproduction, 2nd edn. Raven Press, New York, pp 1063–1175, 1435–1487Google Scholar
  133. Knuth UA, Neuwinger J, Nieschlag E (1989) Bias to routine semen analysis by uncontrolled changes in laboratory environment—detection by long-term sampling of monthly means for quality control. Int J Androl 12:375–383PubMedGoogle Scholar
  134. Kinsey WH, Koehler JK (1976) Fine structural localization of Concanavalin A binding sites on hamster spermatozoa. J Supramolecular Struct 5(2):185–198Google Scholar
  135. Kordan W, Mollova MV, Ivanova M, Holody D, Georgieva R, Strzezek J (1999) Immunolocalization and binding characteristics of boar seminal plasma glycoprotein (Gp-54) and its component—the sperm motility inhibiting factor (SMIF). Anim Sci Pap Rep 17:49–57Google Scholar
  136. Krahenbuhl S, Chang M, Brass EP, Hoppel CL (1991) Decreased activities of ubiquinol:ferricytochrome c oxidoreductase (complex III) and ferrocytochrome c:oxygen oxidoreductase (complex IV) in liver mitochondria from rats with hydroxycobalamin[c-lactam]-induced methylmalonic aciduria. J Biol Chem 266(31): 20998–201003Google Scholar
  137. Kvist U, Björndahl L (eds) (2002) Manual on basic semen analysis. ESHRE monographs. Oxford University Press, OxfordGoogle Scholar
  138. Lampiao F, Strijdom H, du Plessis SS (2006) Direct nitric oxide measurement in human spermatozoa: flow cytometric analysis using the fluorescent probe, diaminofluorescein. Int J Androl 29(5):564–567PubMedGoogle Scholar
  139. Landim-Alvarenga FC, Graham JK, Alvarenga MA, Squires EL (2004) Calcium influx into equine and bovine spermatozoa during in vitro capacitation. Anim Reprod 1(1):96–105Google Scholar
  140. Lesnefsky EJ, Hoppel CL (2006) Oxidative phosphorylation and aging. Ageing Res Rev 5(4):402–433PubMedGoogle Scholar
  141. Lynham JA, Harrison RA (1998) Use of stored pig eggs to assess boar sperm fertilizing functions in vitro. Biol Reprod 58:539–550PubMedGoogle Scholar
  142. Liu Z, Foote RH (1998) Osmotic effects on volume and motility of bull sperm exposed to membrane permeable and nonpermeable agents. Criobiology 37(3):207–218Google Scholar
  143. Lopes S, Jurisicova A, Sun JG, Casper RF (1998) Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 13(4):896–900PubMedGoogle Scholar
  144. López Rodríquez A, Rijsselaere T, Bijttebier J, Philip V, Van Soom A, Maes D (2011) Effectiveness of the sperm quality analyzer (SQA-Vp) for porcine semen analysis. Theriogenology. 75: 972–977Google Scholar
  145. Lorton SP, First NL (1977) Inhibition of sperm migration through cervical mucus in vitro. Fertil Steril 28(12):1295–1300PubMedGoogle Scholar
  146. Love CC, Thompson JA, Brinsko SP, Rigby SL, Blanchard TL, Lowry VK, Varner DD (2003) Relationship between stallion sperm motility and viability as detected by two fluorescence staining techniques using flow cytometry. Theriogenology 60(6):1127–1138PubMedGoogle Scholar
  147. Lu JC, Xu HR, Huang YF (2007) Determination of alpha-glucosidase activity in seminal plasma by semi-automatic biochemistry analyzer. Natl J Androl 13(9):791–794 (Article in Chinese)Google Scholar
  148. Ludwig G, Frick J (1990) Spermatology: atlas and manual. Springer, New YorkGoogle Scholar
  149. Maes D, Rijsselaere T, Vyt P, Sokolowska A, Deley W, Van Soon A (2010) Comparison of five different methods to assess the concentration of boar semen. Vlaams Diergeneeskunding Tijdschrift 79:42–47Google Scholar
  150. Magnus O, Abyholm T, Brekke I, Purvis K (1993) Provocation testing of human sperm motility using energy substrates and activators of the cyclic nucleotide system: II. Studies on sperm from asthenozoospermic subjects. Int J Fertil 38(2):123–128PubMedGoogle Scholar
  151. Mañásková P, Balínová P, Kraus M, Tichá M, Jonáková V (2003) Mutual interactions of boar seminal plasma proteins studied by immunological chromatographic methods. Am J Reprod Immunol 50:399–401PubMedGoogle Scholar
  152. Mann T, Lutwak-Mann C (1982) Passage of chemicals into human and animal semen: mechanisms and significance. Crit Rev Toxicol 11(1):1–14PubMedGoogle Scholar
  153. Marin S, Chiang K, Bassilian S, Lee WN, Boros LG, Fernández-Novell JM, Centelles JJ, Medrano A, Rodriguez-Gil JE, Cascante M (2003) Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization. FEBS Lett 554(3):342–346PubMedGoogle Scholar
  154. Martín S (1982) Reproducción e Inseminación Artificial Porcina. Aedos, Barcelona, SpainGoogle Scholar
  155. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556PubMedGoogle Scholar
  156. Martínez E, Vázquez JM, Matas C, Roca J, Coy P, Gadea J (1993) Evaluation of boar spermatozoa penetrating capacity using pig oocytes at the germinal vesicle stage. Theriogenology 40(3):547–557PubMedGoogle Scholar
  157. Martinez EA, Vazquez JM, Matas C, Gadea J, Alonso MI, Roca J (1996) Oocyte penetration by fresh or stored diluted boar spermatozoa before and after in vitro capacitation treatments. Biol Reprod 55(1):134–140PubMedGoogle Scholar
  158. Martínez-Pastor F, Tizado EJ, Garde JJ, Anel L, de Paz P (2011) Statistical Series: opportunities and challenges of sperm motility subpopulation analysis. Theriogenology 75(5):783–795PubMedGoogle Scholar
  159. Martínez-Rodríguez C, Alvarez M, Ordás L, Chamorro CA, Martínez-Pastor F, Anel L, de Paz P (2012) Evaluation of ram semen quality using polyacrylamide gel instead of cervical mucus in the sperm penetration test. Theriogenology 77(8):1575–1586PubMedGoogle Scholar
  160. Matás C, Sansegundo M, Ruiz S, García-Vázquez FA, Gadea J, Romar R, Coy P (2010) Sperm treatment affects capacitation parameters and penetration ability of ejaculated and epididymal boar spermatozoa. Theriogenology 74(8):1327–1340Google Scholar
  161. Matás C, Vieira L, García-Vázquez FA, Avilés-López K, López-Úbeda R, Carvajal JA, Gadea J (2011) Effects of centrifugation through three different discontinuous Percoll gradients on boar sperm function. Anim Reprod Sci 127(1–2):62–72PubMedGoogle Scholar
  162. Mattioli M, Barboni B, Bacci ML, Seren E (1990) Maturation of pig oocytes: observations on membrane potential. Biol Reprod 43(2):318–322PubMedGoogle Scholar
  163. Mattioli M, Barboni B, Lucidi P, Seren E (1996) Identification of capacitation in boar spermatozoa by chlortetracycline staining. Theriogenology 45:373–381PubMedGoogle Scholar
  164. Maxwell WMC, Johnson LA (1999) Physiology of spermatozoa at high dilution rates: the influence of seminal plasma. Theriogenology 52:1353–1362PubMedGoogle Scholar
  165. Maxwell WM, de Graaf SP, Ghaoui Rel-H, Evans G (2007) Seminal plasma effects on sperm handling and female fertility. Soc Reprod Fertil Suppl 64: 13–38Google Scholar
  166. Medrano A, Fernández-Novell JM, Ramió L, Alvarez J, Goldberg E, Montserrat Rivera M, Guinovart JJ, Rigau T, Rodríguez-Gil JE (2006) Utilization of citrate and lactate through a lactate dehydrogenase and ATP-regulated pathway in boar spermatozoa. Mol Reprod Dev 73(3): 369–78Google Scholar
  167. Mishra DP, Shaha C (2005) Estrogen-induced spermatogenic cell apoptosis occurs via the mitochondrial pathway: role of superoxide and nitric oxide. J Biol Chem 280(7):6181–6196PubMedGoogle Scholar
  168. Morton B, Harrigan-Lum J, Albagli L, Jooss T (1974) The activation of motility in quiescent hamster sperm from the epididymis by calcium and cyclic nucleotides. Biochem Biophys Res Commun 23;56(2): 372–379Google Scholar
  169. Moura AA, Chapman DA, Koc H, Killian GJ (2006) Proteins of the cauda epididymal fluid associated with fertility of mature dairy bulls. J Androl 27(4):534–541PubMedGoogle Scholar
  170. Mrkun J, Kosec M, Zakosek M, Zrimsek P (2007) Method agreement between measuring of boar sperm concentration using Makler chamber and photometer. Acta Veterinaria (Beogard) 57(5–6):563–572Google Scholar
  171. Murase T, Imaeda N, Yamada H, Miyazawa K (2007) Seasonal changes in semen characteristics, composition of seminal plasma and frequency of acrosome reaction induced by calcium and calcium ionophore A23187 in Large White boars. J Reprod Dev 53(4):853–865PubMedGoogle Scholar
  172. Nagai T, Takenaka A, Mori T, Hirayama M (1994) Effects of caffeine and casein phosphopeptides on fertilization in vitro of pig oocytes matured in culture. Mol Reprod Dev 37(4):452–456PubMedGoogle Scholar
  173. Nagdas SK, Winfrey VP, Olson GE (2006) Identification of a hamster sperm 26-kilodalton dehydrogenase/reductase that is exclusively localized to the mitochondria of the flagellum. Biol Reprod 75(2):197–202PubMedGoogle Scholar
  174. Nagy S, Jansen J, Topper EK, Gadella BM (2003) A triple-stain flow cytometric method to assess plasma-and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol Reprod 68:1828–1835PubMedGoogle Scholar
  175. Nicolson GL, Usui N, Yanagimachi R, Yanagimachi H, Smith JR (1977) Lectin-binding sites on the plasma membranes of rabbit spermatozoa. Changes in surface receptors during epididymal Maturation and after ejaculation. J Cell Biol 74(3):950–962PubMedGoogle Scholar
  176. Nimtz M, Grabenhorst E, Conradt HS, Sanz L, Calvete JJ (1999) Structural characterization of the oligosaccharide chains of native and crystallized boar seminal plasma spermadhesin PSP-I and PSP-II glycoforms. Eur J Biochem 265(2):703–718PubMedGoogle Scholar
  177. Nishita T, Itoh S, Arai S, Ichihara N, Arishima K (2011) Measurement of carbonic anhydrase isozyme VI (CA-VI) in swine sera, colostrums, saliva, bile, seminal plasma and tissues. Anim Sci J 82(5):673–678PubMedGoogle Scholar
  178. O’Hara L, Hanrahan JP, Richardson L, Donovan A, Fair S, Evans AC, Lonergan P (2010) Effect of storage duration, storage temperature, and diluent on the viability and fertility of fresh ram sperm. Theriogenology 73(4):541–549PubMedGoogle Scholar
  179. Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y (1985) Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol chem 260(17):9699–9705PubMedGoogle Scholar
  180. Okazaki T, Yoshida S, teshima H, Shimada M (2011) The addition of calcium ion chelator, EGTA to thawing solution improves fertilizing ability in frozen-thawed boar sperm. Anim Sci J 82(3): 412–419Google Scholar
  181. Ott HW, Schmiedehausen K, Kat S, Binder H, Gall C, Kuwert T, Heute D, Virgolini I, Wildt L (2007) Tubal transport of spermatozoa does not appear to be dependent on normal cilia function. Fertil Steril 88(5): 1437.e17–1437.e19Google Scholar
  182. Peña FJ, Johannisson A, Wallgren M, Rodríguez-Martínez H (2003) Assessment of fresh and frozen-thawed boar semen using an Annexin-V assay: a new method of evaluating sperm membrane integrity. Theriogenology 60(4):677–689PubMedGoogle Scholar
  183. Peña FJ, Saravia F, Núnez-Martínez I, Johannisson A, Wallgren M, Rodríguez-Martínez H (2006) Do different portions of the boar ejaculate vary in their ability to sustain cryopreservation. Anim Reprod Sci 93:101–113PubMedGoogle Scholar
  184. Peña FJ, Rodríguez-Martínez H, Tapia JA, Ortega Ferrussola C, González Fernández L, Macías García B (2009) Mitochondria in mammalian sperm physiology and Pathology: a review. Reprod Domestic Anim 44: 345–349Google Scholar
  185. Perez-Llano B, Lorenzo JL, Yenes P, Trejo A, Gacrcía-Casado P (2001) A short hypoosmotic swelling test for the prediction of boar sperm fertility. Theriogenology 53: 387–398Google Scholar
  186. Perez-Llano B, López-Fernández C, García-Casado P, Arroyo F, Gosalbez A, Sala R, Gosálvez J (2010) Dynamics of sperm DNA fragmentation in the swine: ejaculate and temperature effects. Anim Reprod Sci 119(3–4): 235–243Google Scholar
  187. Perez LJ, Valcarcel A, Delasheras MA, Moses D, Baldassarre H (1996) Evidence that frozen/thawed ram spermatozoa show accelerated capacitation in vitro as assessed by chlortetracycline assay. Theriogenology 46:131–140 Google Scholar
  188. Perl A, Qian Y, Chohan KR, Shirley CR, Amidon W, Banerjee S, Middleton FA, Conkrite KL, Barcza M, Gonchoroff N, Suarez SS, Banki K (2006) Transaldolase is essential for maintenance of the mitochondrial transmembrane potential and fertility of spermatozoa. Proc Natl Acad Sci USA 103(40):14813–14818PubMedGoogle Scholar
  189. Petrunkina AM, Töpfer-Petersen E (2000) Heterogeneous osmotic behaviour in boar sperm populations and its relevance for detection of changes in plasma membrane. Reprod Fertil Dev 12:297–305PubMedGoogle Scholar
  190. Petrunkina AM, Harrison RAP, Töpfer-Petersen E (2000) Only low levels of spermadhesin AWN are detectable on the surface of live ejaculated boar spermatozoa. Reprod Fertil Dev 12:361–371PubMedGoogle Scholar
  191. Pinart E, Sancho S, Briz M, Bonet S, Garcia-Gil N (1999) Characterization of the semen quality of postpuberal boars with spontaneous unilateral abdominal cryptorchidism on the right side. Anim Reprod Sci 55:269–278PubMedGoogle Scholar
  192. Pinart E, Bussalleu E, Yeste M, Briz M, Sancho S, García-Gil N, Bassols J, Pruneda A, Casas I, Bonet S (2006) Protocolo de triple marcaje con fluorocromos para el análisis functional de los espermatozoides de porcino. In: Bonet S, Martínez EA, Rodríguez-Gil JE, Barrera X (eds) Manual de Técnicas de Reproducción Asistida en Porcino. Universitat de Girona. Red Temática Nacional de Reproducción PorcinaGoogle Scholar
  193. Pizzi F, Gliozzi TM, Cerolini S, Maldjian A, Zaniboni L, Parodi L, Gandini G (2005) Semen quality of Italian local pig breeds. Italian J Anim Sci 4(2):482–484Google Scholar
  194. Prathalingam NS, Holt WW, Revell SG, Jones S, Watson PF (2006) The precision and accuracy of six different methods to determine sperm concentration. J Androl 27(2):257–262PubMedGoogle Scholar
  195. Pruneda A, Pinart E, Briz MD, Sancho S, Garcia-Gil N, Badia E, Kádár E, Bassols J, Bussalleu E, Yeste M, Bonet S (2005) Effects of a high semen-collection frequency on the quality of sperm from ejaculates and from six epididymal regions in boars. Theriogenology 63:2219–2232PubMedGoogle Scholar
  196. Puigmulé M, Fàbrega A, Yeste M, Bonet S, Pinart E (2011) Study of proacrosin-acrosin system in epididymal ejaculated and in Vitro capacitated boar spermatozoa. Reprod Fertil Dev 23:837–845PubMedGoogle Scholar
  197. Purdy PH (2008) Ubiquitination and its influence in boar sperm physiologyand cryopreservation. Theriogenology 70:818–826PubMedGoogle Scholar
  198. Pursel VG, Johnson LA, Schulman LL (1973) Effect of dilution, seminal plasma and incubation period on cold shock susceptibility of boar spermatozoa. J Anim Sci 37(2):528–531PubMedGoogle Scholar
  199. Quintero-Moreno A, Rigau T, Rodríguez-Gil JE (2004) Regression analyses and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. Theriogenology 61(4):673–690PubMedGoogle Scholar
  200. Ramió-Lluch L, Fernández-Novell J, Peña A., Ramírez A, Concha I, Rodríguez-Gil J (2011) ‘In Vitro’ capacitation and further ‘In Vitro’ progesterone-induced acrosome exocytosis are linked to specific changes in the expression and acrosome location of protein phosphorylation in serine residues of boar spermatozoa. Reprod Domestic Anim. doi:  10.1111/j.1439-0531.2011.01965.x Google Scholar
  201. Rasbech NO (1975) Ejaculatory disorders of the stallion. J Reprod Fertil Suppl (23):123–128Google Scholar
  202. Rath D, Long CR, Dobrinsky JR, Welch GR, Schreier LL, Johnson LA (1999) In vitro production of sexed embryos for gender preselection: high-speed sorting of X-chromosome-bearing sperm to produce pigs after embryo transfer. J Anim Sci 77(12):3346–3352PubMedGoogle Scholar
  203. Rath D, Töpfer-Petersen E, Michelmann HW, Schwartz P, Ebeling S (2005) Zona pellucida characteristics and sperm-binding patterns of in vivo and in vitro produced porcine oocytes inseminated with differently prepared spermatozoa. Theriogenology 63(2):352–362PubMedGoogle Scholar
  204. Revell SG, Mrode RA (1994) An osmotic resistance test for bovine semen. Anim Reprod Sci 36: 77–86Google Scholar
  205. Rigau T, Farré M, Ballester J, Mogas T, Peña A, Rodríguez-Gil JE (2001) Effects of glucose and fructose on motility patterns of dog spermatozoa from fresh ejaculates. Theriogenology 56(5):801–815PubMedGoogle Scholar
  206. Rijsselaere T, Van Soom A, Maes D, de Kruiff A (2002) Use of the Sperm Quality Analyzer (SQA II-C) for the assessment of dog sperm quality. Reprod Domestic Anim 37:158–163Google Scholar
  207. Rivlin J, Mendel J, Rubinstein S, Etkovitz N, Breitbart H (2004) Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biol Reprod 70(2):518–522PubMedGoogle Scholar
  208. Rodríguez-Gil JE, Montserrat A, Rigau T (1994) Effects of hypoosmotic incubation on acrosome and tail structure on canine spermatozoa. Theriogenology 42(5):815–829PubMedGoogle Scholar
  209. Rodriguez-Martínez H (2003) Laboratory semen assessment and prediction of fertility: still utopia? Reprod Domenstic Anim 38(4):312–318Google Scholar
  210. Rodriguez-Martínez H, Kvist U, Saravia F, Wallgren M, Johannisson A, Sanz L, Peña FJ, Martínez EA, Roca J, Vázquez JM, Calvete JJ (2009) The physiological roles of the boar ejaculate. Soc Reprod Fertil Suppl 66:1–21Google Scholar
  211. Rodríguez-Martínez H, Kvist U, Ernerudh J, Sanz L, Clavete JJ (2011) Seminal plasma proteins: what role do they play? Am J Reprod Immunol 66(1):11–22PubMedGoogle Scholar
  212. Rogers BJ (1985) The sperm penetration assay: its usefulness reevaluated. Fertil Steril 43(6):821–840PubMedGoogle Scholar
  213. Root Kustritz MV, Olson PN, Johnston SD, Root TK (1998) The effects of stains and investigators on assessment of morphology of canine spermatozoa. J Am Anim Hospital Assoc 34(4):348–352Google Scholar
  214. Rossato M, Balercia G, Lucarelli G, Foresta C, Mantero F (2002) Role of seminal osmolarity in the reduction of human sperm motility. Int J Androl 25(4):230–235PubMedGoogle Scholar
  215. Rothschild MP (1990) The role of biology in future pig breeding programs. In: Proceedings of the 4th world congress on genetics applied to livestock production held in Edinburg, vol 15, pp 415–424Google Scholar
  216. Rowland SC, Jacobson JD, Patton WC, King A, Chan PJ (2003) Dual fluorescence analysis of DNA apoptosis in sperm. Am J Obstet Gynecol 188(5):1156–1157PubMedGoogle Scholar
  217. Rozeboom KJ, Troedsson MH, Hodson HH, Shurson GC, Crabo BG (2000) The importance of seminal plasma on the fertility of subsequent artificial inseminations in swine. J Anim Sci 78:443–448PubMedGoogle Scholar
  218. Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U (1999) Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod 4(1):31–37PubMedGoogle Scholar
  219. Saleh RA, Agarwal A (2002) Oxidative stress and male infertility: from research bench to clinical practice. J Androl 23(6):737–752PubMedGoogle Scholar
  220. Salicioni AM, Platt MD, Wertheimer EV, Arcelay E, Allaire A, Sosnik J, Visconti PE (2007) Signalling pathways involved in sperm capacitation. Soc Reprod Fertil Suppl 65: 245–259Google Scholar
  221. Sanchez R, Toepfer-Petersen E, Aitken RJ, Schill WB (1991) A new method for evaluation of the acrosome reaction in viable human spermatozoa. Andrologia 23(3):197–203PubMedGoogle Scholar
  222. Sancho S (2002) Efectes del fotoperíode sobre la qualitat espermàtica de mascles porcins Sus domesticus. Doctoral ThesisGoogle Scholar
  223. Sancho S, Pinart E, Briz M, Garcia-Gil N, Badia E, Bassols J, Kádár E, Pruneda A, Bussalleu E, Yeste M, Coll MG, Bonet S (2004) Semen quality of postpubertal boars during increasing and decreasing natural photoperiods. Theriogenology 62(7):1271–1282PubMedGoogle Scholar
  224. Sancho S, Casas I, Ekwall H, Saravia F, Rodriguez-Martinez H, Rodriguez-Gil JE, Flores E, Pinart E, Briz M, Garcia-Gil N, Bassols J, Pruneda A, Bussalleu E, Yeste M, Bonet S (2007) Effects of cryopreservation on semen quality and the expression of sperm membrane hexose transporters in the spermatozoa of Iberian pigs. Reproduction 134(1):111–121PubMedGoogle Scholar
  225. Satake N, Elliott RM, Watson PF, Holt WV (2006) Sperm selection and competition in pigs may be mediated by the differential motility activation and suppression of sperm subpopulations within the oviduct. J Exp Biol 209(Pt 8):1560–1572PubMedGoogle Scholar
  226. Schwarz MA, Koehler JK (1979) Alterations in lectin binding to guinea pig spermatozoa accompanying in vitro capacitation and the acrosome reaction. Biol Reprod 21(5):1295–1307PubMedGoogle Scholar
  227. Setchell BP (1991) Male reproductive organs and semen. In: Cupps PT (ed) Reproduction in domestic animals. Academic, San Diego. Chap 6, pp 221–249Google Scholar
  228. Serrano H, Díaz-Esparza L, García-Suárez D (2001) Pig sperm membrane integrity evaluated by lectin labelling. Arch Androl 47(1):59–65PubMedGoogle Scholar
  229. Shadan S, James PS, Howes EA, Jones R (2004) Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod 71(1):253–265PubMedGoogle Scholar
  230. Shaffer JE, Almquist JO (1948) Vital staining of bovine spermatozoa with an eosine-aniline blue staining mixture. J Dairy Sci 31:677Google Scholar
  231. Shapiro HM (1998) Practical flow citometry, 2nd edn. Alan R. Liss Inc, New York, pp 168–169Google Scholar
  232. Shibahara H, Mitsuo M, Inoue M, Hasegawa A, Shigeta M, Koyama K (1998) Relationship between human in vitro fertilization and intracytoplasmic sperm injection and the zona-free hamster egg penetration test. Human Reprod 13(7): 1928–1932Google Scholar
  233. Si Y, Okuno M (1999) Role of tyrosine phosphorylation of flagellar proteins in hamster sperm hyperactivation. Biol Reprod 61(1):240–246PubMedGoogle Scholar
  234. Silva PF, Gadella BM (2006) Detection of damage in mammalian sperm cells. Theriogenology 65(5):958–978PubMedGoogle Scholar
  235. Sinowatz F, Friess AE (1983) Localization of lectin receptors on bovine epididymal spermatozoa using a colloidal gold technique. Histochemistry 79(3):335–344PubMedGoogle Scholar
  236. Strzezek J, Skaweta R (1984) Application of chosen biochemical indexes for biological quality of boar semen stored at 15–18 C. In: 10th International Congress Animal Reproduction Urbana, IL vol 2, pp 67–69Google Scholar
  237. Strzezek J, Saiz-Cidoncha F, Wysocki P, Tyszkiewicz A, Jastrzebski M (2002) Seminal plasma proteins as markers of biological value of boar semen. Anim Sci Pap Rep 20:255–266Google Scholar
  238. Strzezek J, Wysocki P, Kordan W, Kuklinska M, Mogielnicka M, Soliwoda D, Fraser L (2005) Proteomics of boar seminal plasma—current studies and possibility of their application in biotechnology of animal reproduction. Reprod Biol 5(3):279–290PubMedGoogle Scholar
  239. Suarez SS, Pacey AA (2006) Sperm transport in the female reproductive tract. Human Reprod Uppdate 12(1):23–37Google Scholar
  240. Sun JG, Jurisicova A, casper RF (1997) Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertility in vitro. Biol Reprod 56(3): 602–607Google Scholar
  241. Sutkeviciene N, Andersson MA, Zilinskas H, Andersson M (2005) Assessment of boar semen quality in relation to fertility with special reference to methanol stress. Theriogenology 63(3):739–747PubMedGoogle Scholar
  242. Taş M, Bacinoglu S, Cirit U, Ozdaş OB, Ak K (2007) Relationship between bovine fertility and the number of spermatozoa penetrating the cervical mucus within straws. Anim Reprod Sci 101(1–2):18–27PubMedGoogle Scholar
  243. Tejerina F, Buranaamnuay K, Saravia F, Wallgren M, Rodriguez-Martinez H (2008) Assessment of motility of ejaculated, liquid-stored boar spermatozoa using computerized instruments. Theriogenology 69:1129–1138PubMedGoogle Scholar
  244. Thibault C, Levasseur MC, Hunter HF (eds) (1993) Reproduction in mammals and mann. Ellipses, ParisGoogle Scholar
  245. Thundathil J, de Lamirande E, Gagnon C (2002) Different signal transduction pathways are involved during human sperm capacitation induced by biological and pharmacological agents. Mol Hum Reprod 8(9):811–816PubMedGoogle Scholar
  246. Tollner TL, Yudin AI, Cherr GN, Overstreet JW (2000) Soybean trypsin inhibitor as a probe for the acrosome reaction in motile cynomolgus macaque sperm. Zygote 8(2):127–137PubMedGoogle Scholar
  247. Trzcinska M, Bryla M, Smorag Z (2011) Apoptotic-like changes in the spermatozoa of fresh and stored boar semen and the quality of embryos produced in vivo. Anim Reprod Sci 124(1–2):90–97PubMedGoogle Scholar
  248. Triana LR, Babcock DF, Lorton SP, First NL, Lardy HA (1980) Release of acrosomal hyaluronidase follows increased membrane permeability to calcium in the presumptive capacitation sequence for spermatozoa of the bovine and other mammalian species. Biol Reprod 23(1):47–59PubMedGoogle Scholar
  249. Tsien RY (1989) Fluorescent indicators of ion concentrations. In: Taylor DL, Yang YL (eds) Fluorescence microscopy of living cells in culture Part 6B Quantitative fluorescence microscopy-imaging and spectroscopy Methods in cell biology, vol 30. Academic, New York, pp 127–156 (Chap 5)Google Scholar
  250. Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12(5):835–840PubMedGoogle Scholar
  251. Turner RM (2003) Tales from the tail: what do we really know about sperm motility? J Androl 24(6):790–803PubMedGoogle Scholar
  252. Varela PF, Romero A, Sanz L, Romao MJ, Töpfer-Petersen E, Calvete JJ (1997) The 2.4 Å resolution crystal structure of boar seminal plasma PSP-I/PSP-II: a zona pellucida-binding glycoprotein heterodimer of the spermadhesin family built by a CUB domain architecture. J Mol Biol 274: 635–649Google Scholar
  253. Vazquez JM, Martinez EA, Roca J, Gil MA, Parrilla I, Cuello C, Carvajal G, Lucas X, Vazquez JL (2005) Improving the efficiency of sperm technologies in pigs: the value of deep intrauterine insemination. Theriogenology 63(2):536–547PubMedGoogle Scholar
  254. Verstegen J, Iguer-ouada M, Onclin K (2002) Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57:149–179PubMedGoogle Scholar
  255. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS (1995) Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121(4):1129–1137PubMedGoogle Scholar
  256. Visconti PE, Kopf GS (1998) Regulation of protein phosphorylation during sperm capacitation. Biol Reprod 59(1):1–6PubMedGoogle Scholar
  257. Vyt P, Maes D, Rijsselaere T, Dejonckheere E, Castryck F, Van Soom A (2004) Motility assessment of porcine spermatozoa: a comparison of methods. Reprod Domest Anim 39:447–453PubMedGoogle Scholar
  258. Vyt P, Maes D, Quinten C, Rijsselaere T, Deley W, Aarts M, de Kruif A, Van Soom A (2008) Detailed motility evaluation of boar semen and its predictive value for reproductive performance in sows. Vlaams Diergeneeskunding Tijdschrift 77:291–298Google Scholar
  259. Waberski D, Magnus F, Mendonca Ferreira F, Petrunkina AM, Weitze KF, Töpfer-Petersen E (2005) Importance of sperm-binding assays for fertility prognosis of porcine spermatozoa. Theriogenology 63(2): 470–484Google Scholar
  260. Wang WH, Abeydeera LR, Fraser LR, Niwa K (1995) Functional-analysis using chlortetracycline fluorescence and in vitro fertilization of frozen-thawed ejaculated boar spermatozoa incubated in a protein-free chemically-defined medium. J Reprod Fertil 104:305–313PubMedGoogle Scholar
  261. Wenzel U, Nickel A, Daniel H (2005) Alpha-Lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2-*-generation. Apoptosis 10(2):359–368PubMedGoogle Scholar
  262. WHO, World Health Organization (2000) WHO laboratoy maual for the examination of human semen and sperm-cervical mucus interaction, 4th edn. Cambridge University Press, CambridgeGoogle Scholar
  263. Woelders H (1991) Overview of in vitro methods for evaluation of semen quality. Reprod Domest Anim Suppl 1: 145–164Google Scholar
  264. Xu X, Pommier S, Arbov T, Hutchings B, Sotto W, Foxcroft GR (1998) In vitro maturation and fertilization techniques for assessment of semen quality and boar fertility. J Anim Sci 76(12):3079–3089PubMedGoogle Scholar
  265. Yanagimachi R (1972) Fertilization of guinea pig eggs in vitro. Anatomical Record 174(1):9–19PubMedGoogle Scholar
  266. Yanagimachi R, Usui N (1974) Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp Cell Res 89(1):161–174PubMedGoogle Scholar
  267. Yanagimachi R, Yanagimachi H, Rogers BJ (1976) The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol Reprod 15(4): 471–476Google Scholar
  268. Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd edn. Raven Press, New York, pp 189–317Google Scholar
  269. Yeste M, Briz M, Pinart E, Sancho S, Garcia-Gil N, Badia E, Bassols J, Pruneda A, Bussalleu E, Casas I, Bonet S (2008a) Hyaluronic acid delays boar sperm capacitation alter 3 days of storage at 15 degrees C. Anim Reprod Sci 109(1–4):236–250PubMedGoogle Scholar
  270. Yeste M, Briz M, Pinart E, Sancho S, Garcia-Gil N, Badia E, Bassols J, Pruneda A, Bussalleu E, Casas I, Bonet S (2008b) Boar spermatozoa and prostaglandin F2alpha. Quality of boar sperm after the addition of prostaglandin F2alpha to the short-term extender over cooling time. Anim Reprod Sci 108(1–2):180–195PubMedGoogle Scholar
  271. Yeste M, Lloyd RE, Badia E, Briz M, Bonet S, Holt WV (2009) Direct contact between boar spermatozoa and porcine oviductal epithelial cell (OEC) cultures is needed for optimal sperm survival in vitro. Anim Reprod Sci 113(1–4): 263–278Google Scholar
  272. Yeste M, Briz M, Pinart E, Sancho S, Bussalleu E, Bonet S (2010) The osmotic tolerance of boar spermatozoa and its usefulness as sperm quality parameter. Anim Reprod Sci 119(3–4):265–274PubMedGoogle Scholar
  273. Yeung CH, Cooper TG, Nieschlag E (1997) A technique for standardization and quality control of subjective sperm motility assessments in semen analysis. Fertil Steril 67:1156–1158PubMedGoogle Scholar
  274. Zhao XM, Song XX, Kawai Y, Niwa K (2002) Penetration in Vitro of zona-free pig oocytes by homologous and heterologous spermatozoa. Theriogenology 58:995–1006PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of BiologyInstitute of Food and Agricultural Technology, University of GironaGironaSpain

Personalised recommendations