Advertisement

Boar Spermatozoa Within the Oviductal Environment (I): Sperm Reservoir

  • Marc YesteEmail author
Chapter

Abstract

This chapter is the first part of three chapters dealing with the passage of boar spermatozoa within the oviduct. First, this chapter starts by outlining some aspects of the anatomy, histology and functions of the oviduct, together with the composition and functions of oviductal fluid. Most of the chapter deals with the formation of the sperm reservoir, including the molecular mechanisms and the role of sperm-surface adhering proteins. The interaction between spermatozoa and oviductal epithelium also focuses on the dialogue between oviductal epithelial cells (OEC) and spermatozoa, which comprises both the influence of OEC on sperm function and survival parameters, and the influence of spermatozoa on the oviductal proteome and secretome. The suitability of in vitro and in vivo studies is also discussed.

Keywords

Oviduct Oviductal fluid Sperm reservoir Spermadhesins Modulation of oviductal environment by spermatozoa 

References

  1. Abe H (1996) The mammalian oviductal epithelium: regional variations in cytological and functional aspects of the oviductal secretory cells. Histol Histopathol 11:743–768PubMedGoogle Scholar
  2. Abe H, Oikawa T (1992) Examination by scanning electron microscopy of oviductal epithelium of the prolific Chinese meishan pig at follicular and luteal phases. Anat Rec 233:399–408PubMedCrossRefGoogle Scholar
  3. Abe H, Sendai Y, Satoh T, Hoshi H (1995) Secretory products of bovine epithelial cells support the viability and motility of bovine spermatozoa in culture in vitro. J Exp Zool 272:54–61PubMedCrossRefGoogle Scholar
  4. Akhondi MA, Chapple C, Moore HDM (1997) Prolonged survival of human spermatozoa when co-incubated with epididymal cell cultures. Hum Reprod 12:514–522PubMedCrossRefGoogle Scholar
  5. Al-Madhoun S, Chen YX, Haidari L, Rayner K, Gerthoffer W, McBride H, O’Brien ER (2007) The interaction and cellular localization of HSP27 and ER-β are modulated by 17beta-estradiol and HSP27 phosphorylation. Mol Cell Endocrinol 270:33–42PubMedCrossRefGoogle Scholar
  6. Anderson DJ, Abbott AF, Jack RM (1993) The role of complement component C3b and its receptors in sperm-oocyte interaction. Proc Natl Acad Sci USA 90:10051–10055PubMedCrossRefGoogle Scholar
  7. Ardón F, Helms D, Sahin E, Bollwein H, Töpfer-Petersen E, Waberski D (2008) Chromatin-unstable boar spermatozoa have little chance of reaching oocytes in vivo. Reproduction 135:461–470PubMedCrossRefGoogle Scholar
  8. Arrigo AP (2005) Chaperons moléculaires et repliement des protéines: l’exemple de certaines protéines de choc thermique. Med Sci (Paris) 21:619–625CrossRefGoogle Scholar
  9. Arrigo AP, Simon S, Gibert B, Kretz-Remy C, Nivon M, Czekalla A, Guillet D, Moulin M, Díaz-Latoud C, Vicart P (2007) Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett 581:3665–3674PubMedCrossRefGoogle Scholar
  10. Assreuy AM, Alencar NMN, Cavada BS, Rocha-Filho DR, Feitosa RF, Cunha FQ, Calvete JJ, Ribeiro RA (2003) Porcine spermadhesin PSP-I/PSP-II stimulates macrophages to release a neutrophil chemotactic substance: modulation by mast cells. Biol Reprod 68:1836–1841PubMedCrossRefGoogle Scholar
  11. Atlas-White M, Murphy BF, Baker HW (2000) Localisation of clusterin in normal human sperm by immunogold electron microscopy. Pathology 32:258–261PubMedGoogle Scholar
  12. Azuma K, Horie K, Inoue S, Ouchi Y, Sakai R (2004) Analysis of estrogen receptor alpha signaling complex at the plasma membrane. FEBS Lett 577:339–344PubMedCrossRefGoogle Scholar
  13. Bagchi MK, Tsai SY, Tsai MJ, O’Malley BW (1991) Progesterone enhances target gene transcription by.receptor free of heat shock proteins Hsp90, Hsp56 and Hsp70. Mol Biol Cell 11:4998–5004Google Scholar
  14. Baillie HS, Pacey AA, Warren MA, Scudamore IW, Barrat CLR (1997) Greater numbers of human spermatozoa associate with endosalpingeal cells derived from the isthmus compared with those from the ampulla. Hum Reprod 12:1985–1992PubMedCrossRefGoogle Scholar
  15. Bando Y, Ogawa S, Yamachi A, Kuwabar K, Ozawa K, Hori O, Yabagi H, Tamatani M, Tohyama M (2000) 150-kDa oxygen-regulated protein (ORP150) functions a novel molecular chaperone in MDCK cells. Am J Physiol Cell Physiol 278:1172–1182Google Scholar
  16. Baniahmad A, Tsai MJ (1993) Mechanisms of transcriptional activation by steroid hormone receptors. J Cell Biochem 51:151–156PubMedCrossRefGoogle Scholar
  17. Bauersachs S, Blum H, Mallok S, Wenigerkind H, Rief S, Prelle K, Wolf E (2003) Regulation of ipsilateral and contralateral bovine oviduct epithelial cell function in the postovulation period: a transcriptomics approach. Biol Reprod 68:1170–1177PubMedCrossRefGoogle Scholar
  18. Beck LR, Boots LR (1974) The comparative anatomy, histology and morphology of the mammalian oviduct. In: Johnson AD, Foley CW (eds) The oviduct and its functions. Academic Press, New York, pp 1–51CrossRefGoogle Scholar
  19. Bedford M (1999) The implications of unusual sperm-female relationships in mammals. In: Gagnon C (ed) The male gamete: from basic science to clinical applications. Cache River Press, USA, pp 81–92Google Scholar
  20. Bergeron A, Villemure M, Lazure C, Manjunath P (2005) Isolation and characterization of the major proteins of ram seminal plasma. Mol Reprod Dev 71:461–470PubMedCrossRefGoogle Scholar
  21. Bergqvist AS, Rodríguez-Martínez H (2006) Sulphated glycosaminoglycans (S-GAGs) and syndecans in the bovine oviduct. Anim Reprod Sci 93:46–60PubMedCrossRefGoogle Scholar
  22. Bergqvist AS, Yokoo M, Heldin P, Frendin J, Sato E, Rodríguez-Martínez H (2005a) Hyaluronan and its binding proteins in the epithelium and intraluminal fluid of the bovine oviduct. Zygote 13:207–218PubMedCrossRefGoogle Scholar
  23. Bergqvist AS, Yokoo M, Bage R, Sato E, Rodríguez-Martrínez H (2005b) Detection of the hyaluronan receptor CD44 in the bovine oviductal epithelium. J Reprod Dev 51:445–453PubMedCrossRefGoogle Scholar
  24. Bergqvist AS, Ballester J, Johannisson A, Hernández M, Lundeheim N, Rodríguez-Martínez H (2006) In vitro capacitation of bull spermatozoa by oviductal fluid and its components. Zygote 14:259–273PubMedCrossRefGoogle Scholar
  25. Bergqvist AS, Ballester J, Johannisson A, Lundeheim N, Rodríguez-Martínez H (2007) Heparin and dermatan sulphate induced capacitation of frozen-thawed bull spermatozoa measured by merocyanine-540. Zygote 15:225–232PubMedCrossRefGoogle Scholar
  26. Bezouška K, Sklenář J, Novák P, Halada P, Havlíček V, Kraus M, Tichá M, Jonáková V (1999) Determination of the complete covalent structure of the major glycoform of DQH sperm surface protein, a novel trypsin resistant boar seminal plasma O-glycoprotein related to pB1 protein. Protein Sci 8:1551–1556PubMedCrossRefGoogle Scholar
  27. Biermann L, Gabius HJ, Denker HW (1997) Neoglycoprotein-binding sites (endogenous lectins) in the fallopian tube, uterus and blastocyst of the rabbit during the preimplantation phase and implantation. Acta Anat 160:159–171PubMedCrossRefGoogle Scholar
  28. Birkhead TR (1998) Cryptic female choice: criteria for establishing female sperm choice. Evolution 52:1212–1218CrossRefGoogle Scholar
  29. Birkhead TR, Møller AP (1993) Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals. Biol J Linn Soc 50:295–311CrossRefGoogle Scholar
  30. Blödow G, Bergfeld J, Kitzig M, Brüssow KP (1990) Steroid hormone levels in follicular fluid of pigs with spontaneous oestrus and synchronised ovulation. Arch Exp Vet Med 44:611–620Google Scholar
  31. Bohen SP, Yamamoto KR (1993) Isolation of Hsp90 mutants by screening for decreased steroid receptor function. Proc Natl Acad Sci USA 90:11424–11428PubMedCrossRefGoogle Scholar
  32. Boilard M, Reyes-Moreno C, Lachance C, Massicotte L, Bailey JL, Sirard MA, Leclerc P (2004) Localization of the chaperone proteins GRP78 and HSP60 on the luminal surface of bovine oviduct epithelial cells and their association with spermatozoa. Biol Reprod 71:1879–1889PubMedCrossRefGoogle Scholar
  33. Bongso A, Ho J, Fong CY, Ng SC, Ratnam S (1993) Human sperm function after coculture with human fallopian tubal epithelial cell monolayers: in vitro model for studying cell interactions in early human conception. Arch Androl 31:183–190PubMedCrossRefGoogle Scholar
  34. Boquest AC, Smith JF, Briggs RM, Duganzich DM, Summers PM (1999) Effects of bovine oviductal proteins on bull spermatozoal function. Theriogenology 51:583–595PubMedCrossRefGoogle Scholar
  35. Bork P, Beckmann G (1993) The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol 231:539–545PubMedCrossRefGoogle Scholar
  36. Brandt Y, Lang A, Madej A, Rodríguez-Martínez H, Einarsson S (2006a) Impact of ACTH administration on the oviductal sperm reservoir in sows: the local endocrine environment and distribution of spermatozoa. Anim Reprod Sci 92:107–122PubMedCrossRefGoogle Scholar
  37. Brandt Y, Lang A, Madej A, Rodríguez-Martínez H, Einarsson S (2006b) Impact of ACTH during oestrus on the ultrastructure of the spermatozoa and their environment in the tubal reservoir of the postovulatory sow. Anim Reprod Sci 93:231–245PubMedCrossRefGoogle Scholar
  38. Bresnick EH, Dalman FC, Sánchez ER, Pratt WB (1989) Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J Biol Chem 264:4992–4997PubMedGoogle Scholar
  39. Brown JA, Eberhardt DM, Schrick FN, Roberts MP, Godkin JD (2003) Expression of retinol-binding protein and cellular retinol-binding protein in the bovine ovary. Mol Reprod Dev 64:261–269PubMedCrossRefGoogle Scholar
  40. Brown MA, Zhu L, Schmidt C, Tucker PW (2007) Hsp90—from signal transduction to cell transformation. Biochem Biophysl Res Commun 363:241–246CrossRefGoogle Scholar
  41. Brüssow KP, Rátky J, Schneider F, Torner H, Kanitz W, Solti L (1998) Does follicular fluid have any importance in the transfer of porcine oocytes into the oviduct. Theriogenology 49:340CrossRefGoogle Scholar
  42. Brüssow KP, Rátky J, Schneider F, Torner H, Kanitz W, Solti L (1999) Effects of follicular fluid on the transport of porcine oocytes into the oviduct at ovulation. Reprod Domest Anim 34:423–429CrossRefGoogle Scholar
  43. Brüssow KP, Rátky J, Torner H, Solti L (2003) Possible role of follicular fluid on porcine in vivo fertilization. In: Sato E, Miyamoto H, Manabe N (eds) Animal Frontiers. Hokuto Pub Co Ltd, Kyoto, pp 89–95Google Scholar
  44. Brüssow KP, Torner H, Rátky J, Manabe N, Tuchscherer A (2006) Experimental evidence for the influence of cumulus oocyte-complexes on sperm release from the porcine oviductal sperm reservoir. J Reprod Dev 52:249–257PubMedCrossRefGoogle Scholar
  45. Brüssow KP, Rátky J, Rodríguez-Martínez H (2008) Fertilization and early embryonic development in the porcine fallopian tube. Reprod Domest Anim 43(Suppl 2):245–251PubMedCrossRefGoogle Scholar
  46. Buhi WC (2002) Characterization and biological roles of oviduct-specific, oestrogen-dependent glycoproteins. Reproduction 123:355–362PubMedCrossRefGoogle Scholar
  47. Buhi WC, Alvarez IM (2003) Identification, characterization and localization of three proteins expressed by the porcine oviduct. Theriogenology 60:225–238PubMedCrossRefGoogle Scholar
  48. Buhi WC, Alvarez IM, Kouba AJ (1997) Oviductal regulation of fertilization and early embryonic development. J Reprod Fertil 52:285–300Google Scholar
  49. Buhi WC, Alvarez IM, Kouba AJ (2000) Secreted proteins of the oviduct. Cells Tissues Organs 166:165–179PubMedCrossRefGoogle Scholar
  50. Bureau M, Bailey JL, Sirard MA (2000) Influence of oviductal cells and conditioned medium on porcine gametes. Zygote 8:139–144PubMedCrossRefGoogle Scholar
  51. Burel C, Mezger V, Pinto M, Rallu M, Trigon S, Morerange M (1992) Mammalian heat shock protein families. Expression and functions. Experientia 48:629–634PubMedCrossRefGoogle Scholar
  52. Burg MB, Ferraris JD, Dmitrieva NI (2007) Cellular response to hyperosmotic stresses. Physiol Rev 87:1441–1474PubMedCrossRefGoogle Scholar
  53. Cacciola G, Chioccarelli T, Ricci G, Meccariello R, Fasano S, Pierantoni R, Cobellis G (2008) The endocannabinoid system in vertebrate male reproduction: a comparative overview. Mol Cell Endocrinol 286(Suppl 1):S24–S30PubMedCrossRefGoogle Scholar
  54. Calderwood SK, Mambula SS, Gray PJ Jr, Theriault JR (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett 581:3689–3694PubMedCrossRefGoogle Scholar
  55. Calvete JJ, Sanz L (2007) Insights into structure-function correlations of ungulate seminal plasma proteins. Soc Reprod Fertil 65:201–216Google Scholar
  56. Calvete JJ, Mann K, Schäfer W, Sanz L, Reinert M, Nessau S, Raida M, Töpfer-Petersen E (1995) Amino acid sequence of HSP-1, a major protein of stallion seminal plasma: effect of glycosylation on its heparin- and gelatin-binding capabilities. Biochem J 310:615–622PubMedGoogle Scholar
  57. Calvete JJ, Dostàlovà Z, Sanz L, Adermann K, Thole HH, Töpfer-Petersen E (1996) Mapping the heparin-binding domain of boar spermadhesins. FEBS Lett 379:207–211PubMedCrossRefGoogle Scholar
  58. Calvete JJ, Raida M, Gentzel M, Urbanke C, Sanz L, Töpfer-Petersen E (1997) Isolation and characterization of heparin- and phosphorylcholine-binding proteins of boar and stallion seminal plasma. Primary structure of porcine pB1. FEBS Lett 407:201–206PubMedCrossRefGoogle Scholar
  59. Carlsson SR, Fukuda M (1990) The polylactosaminoglycans of human lysosmal membrane glycoproteins Lamp-1 and Lamp-2. Localization on the peptide backbones. J Biol Chem 265:20488–20495PubMedGoogle Scholar
  60. Carrasco LC, Romar R, Avilés M, Gadea J, Coy P (2008) Determination of glycosidase activity in porcine oviductal fluid at the different phases of the estrous cycle. Reproduction 136:833–842PubMedCrossRefGoogle Scholar
  61. Catelli MG, Devin-Leclerc J, Bouhouche I, Cadepond F (1999) Interaction fonctionnelle de l’HSP90AA1 avec les récepteurs des stéroïdes. J Soc Biol 193:361–367PubMedGoogle Scholar
  62. Cedenho AP, Lima SB, Cenedeze MA, Spaine DM, Ortiz V, Oehninger S (2006) Oligozoospermia and heat-shock protein expression in ejaculated spermatozoa. Hum Reprod 21:1791–1794PubMedCrossRefGoogle Scholar
  63. Centurión F, Vázquez JM, Calvete JJ, Roca J, Sanz L, Parrilla I, García EM, Martínez EA (2003) Influence of porcine spermadhesins on the susceptibility of boar spermatozoa to high dilution. Biol Reprod 69:640–646PubMedCrossRefGoogle Scholar
  64. Chailley B, Pradel LA (1992) Immunodetection of annexins 1 and 2 in ciliated cells from quail oviduct. Biol Cell 75:45–54PubMedCrossRefGoogle Scholar
  65. Chang MH, Isaac EL, Litjen T, Hodge G, Karageorgos LE, Meikle PJ (2004) Transthyretin interacts with the lysosome-associated membrane protein (LAMP-1) in circulation. Biochem J 382:481–489PubMedCrossRefGoogle Scholar
  66. Chian RC, Lapointe S, Sirard MA (1995) Capacitation in vitro of bovine spermatozoa by oviduct epithelial cell monolayer conditioned medium. Mol Reprod Dev 42:318–324PubMedCrossRefGoogle Scholar
  67. Christmas P, Callaway J, Fallon J, Jones J, Haigler HT (1991) Selective secretion of annexin 1, a protein without a signal sequence, by the human prostate gland. J Biol Chem 266:2499–2507PubMedGoogle Scholar
  68. Ciocca DR, Österreich S, Chamness GC, McGuire ML, Fuqua SAW (1993) Biological and clinical implications of heat shock protein 27000 (Hsp27), a review. J Natl Cancer Inst 85:1558–1570PubMedCrossRefGoogle Scholar
  69. Cobellis G, Cacciola G, Scarpa D, Meccariello R, Chianese R, Franzoni MF, Mackie K, Pierantoni R, Fasano S (2006) Endocannabinoid system in frog and rodent testis: type-1 cannabinoid receptor and fatty acid amide hydrolase activity in male germ cells. Biol Reprod 75:82–89PubMedCrossRefGoogle Scholar
  70. Cortés PP, Orihuela PA, Zúñiga LM, Velásquez LA, Croxatto HB (2004) Sperm binding to oviductal epithelial cells in the rat: role of sialic acid residues on the epithelial surface and sialic acid-binding sites on the sperm surface. Biol Reprod 71:1262–1269PubMedCrossRefGoogle Scholar
  71. Cox CI, Lesse HJ (1997) Retention of functional characteristics by bovine oviduct and uterine epithelia in vitro. Anim Reprod Sci 46:169–178PubMedCrossRefGoogle Scholar
  72. Coy P, Cánovas S, Mondéjar I, Saavedra MD, Romar R, Grullón L, Matás C, Avilés M (2008) Oviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermy. Proc Natl Acad Sci USA 105:15809–15814PubMedCrossRefGoogle Scholar
  73. Coy P, Lloyd RE, Romar R, Satake N, Matás C, Gadea J, Holt WV (2010) Effects of porcine pre-ovulatory oviductal fluid on boar sperm function. Theriogenology 74:632–642PubMedCrossRefGoogle Scholar
  74. Craig EA, Weissman JS, Horwich AL (1994) Heat shock proteins and molecular chaperones, mediators of protein conformation and turnover in the cell. Cell 78:365–372PubMedCrossRefGoogle Scholar
  75. Cross BE, O’Dea HM, MacPhee DJ (2007) Expression of small heat shock-related protein 20 (HSP20) in rat myometrium is markedly decreased during late pregnancy and labour. Reproduction 133:807–817PubMedCrossRefGoogle Scholar
  76. Czar MJ, Lyons RH, Welsh MJ, Renoir JM, Pratt WB (1995) Evidence that the FK506-binding immunophilin heat shock protein 56 is required for trafficking of the glucocorticoid receptor from the cytoplasm to the nucleus. Mol Endocrinol 9:1549–1560PubMedCrossRefGoogle Scholar
  77. Dalman FC, Sturzenbecker LJ, Levin AA, Lucas DA, Perdew GH, Petkovitch M, Chambon P, Grippo JF, Pratt WB (1991) Retinoic acid receptor belongs to a subclass of nuclear receptors that do not form “docking” complexes with Hsp90. Biochemistry 30:5605–5608PubMedCrossRefGoogle Scholar
  78. Daugaar M, Rohde M, Jäättelä M (2007) The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710CrossRefGoogle Scholar
  79. DeMott RP, Suarez SS (1992) Hyperactivated sperm progress in the mouse oviduct. Biol Reprod 46:779–785PubMedCrossRefGoogle Scholar
  80. DeMott RP, Lefebvre R, Suarez SS (1995) Carbohydrates mediate the adherence of hamster sperm to oviductal epithelium. Biol Reprod 52:1395–1403PubMedCrossRefGoogle Scholar
  81. Desnoyers L, Manjunath P (1992) Major proteins of bovine seminal plasma exhibit novel interactions with phospholipid. J Biol Chem 267:10149–10155PubMedGoogle Scholar
  82. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949PubMedCrossRefGoogle Scholar
  83. Dickens CJ, Cox CI, Leese HJ (1996) Intracellular calcium in cultured rabbit oviduct epithelial cells. Reprod Fertil Dev 8:243–247PubMedCrossRefGoogle Scholar
  84. Dinara S, Sengoku K, Tamate K, Horikawa M, Ishikawa M (2001) Effects of supplementation with free radical scavengers on the survival and fertilization rates of mouse cryopreserved oocytes. Hum Reprod 16:1976–1981PubMedCrossRefGoogle Scholar
  85. Doak RL, Hall A, Dale HE (1967) Longevity of spermatozoa in the reproductive tract of the bitch. J Reprod Fert 13:51–58CrossRefGoogle Scholar
  86. Dobrisnki I, Suarez SS, Ball BA (1996) Intracellular calcium concentration in equine spermatozoa attached to oviductal epithelial cells in vitro. Biol Reprod 54:783–788CrossRefGoogle Scholar
  87. Dobrinski I, Smith TT, Suarez SS, Ball BA (1997) Membrane contact with oviductal epithelium modulates the intracellular calcium concentration of equine spermatozoa in vitro. Biol Reprod 56:861–869PubMedCrossRefGoogle Scholar
  88. Dobrinski I, Jacob JR, Tennant BC, Ball BA (1999) Generation of an equine oviductal epithelial cell line for the study of sperm-oviduct interactions. Theriogenology 52:875–885PubMedCrossRefGoogle Scholar
  89. Dostàlovà Z, Calvete JJ, Sanz L, Töpfer-Petersen E (1994a) Quantitation of boar spermadhesins in accessory sex gland fluids and on the surface of epididymal, ejaculated and capacitated spermatozoa. Biochim Biophys Acta 1200:48–54PubMedCrossRefGoogle Scholar
  90. Dostàlovà Z, Cavette JJ, Sanz L, Hettel C, Riedel D, Schöneck C, Einspanier R, Töpfer-Petersen E (1994b) Immunolocalization and quantitation of acidic seminal fluid protein (aSFP) in ejaculated, swim-up, and capacitated bull spermatozoa. Biol Chem Hoppe Seyler 375:457–461PubMedCrossRefGoogle Scholar
  91. Dostàlovà Z, Cavette JJ, Sanz L, Töpfer-Petersen E (1995a) Boar spermadhesin AWN-1: Oligosaccharide and zona pellucida binding characteristics. Eur J Biochem 230:329–336PubMedCrossRefGoogle Scholar
  92. Dostàlovà Z, Cavette JJ, Töpfer-Petersen E (1995b) Interaction of non-aggregated boar AWN-1 and AQN-3 with phospholipid matrices. A model for coating of spermadhesins to the sperm surface. Biol Chem Hoppe Seyler 376:237–242PubMedCrossRefGoogle Scholar
  93. Dougherty JJ, Puri RK, Toft DO (1984) Polypeptide components of two 8 S forms of chicken oviduct progesterone receptor. J Biol Chem 259:8004–8009PubMedGoogle Scholar
  94. Ecroyd H, Jones RC, Aitken RJ (2003) Tyrosine phosphorylation of HSP-90 during mammalian sperm capacitation. Biol Reprod 69:1801–1807PubMedCrossRefGoogle Scholar
  95. Eiler H, Nalbandov AV (1977) Sex steroids in the follicular fluid and blood plasma during the estrous cycle of pigs. Endocrinology 100:331–338PubMedCrossRefGoogle Scholar
  96. Einarsson S, Brandt Y, Rodríguez-Martínez H, Madej A (2008) Conference Lecture: Influence of stress on estrus, gametes and early embryo development in the sow. Theriogenology 70:1197–1201PubMedCrossRefGoogle Scholar
  97. Einspanier R, Einspanier A, Wempe F, Scheit KH (1991) Characterization of a new bioactive protein from bovine seminal fluid. Biochem Biophys Res Commun 179:1006–1010PubMedCrossRefGoogle Scholar
  98. Ekhlasi-Hundrieser M, Sinowatz F, Greiser de Wilke I, Waberski D, Töpfer-Petersen E (2002) Expression of spermadhesin genes in porcine male and female reproductive tracts. Mol Reprod Dev 61:32–41Google Scholar
  99. Ekhlasi-Hundrieser M, Gohr K, Wagner A, Tsolova M, Petrunkina AM, Töpfer-Petersen E (2005) Spermadhesin AQN1 is a candidate receptor molecule involved in the formation of the oviductal sperm reservoir in the pig. Biol Reprod 73:536–545PubMedCrossRefGoogle Scholar
  100. Ekhlasi-Hundrieser M, Schäfer B, Philipp U, Kuiper H, Leeb T, Mehta M, Kirchhoff C, Töpfer-Petersen E (2007) Sperm-binding fibronectin type II-module proteins are genetically linked and functionally related. Gene 392:253–265PubMedCrossRefGoogle Scholar
  101. Ekhlasi-Hundrieser M, Calvete JJ, Von Rad B, Hettel C, Nimtz M, Töpfer-Petersen E (2008) Point mutations abolishing the mannose-binding capability of boar spermadhesin AQN-1. Biochim Biophys Acta 1784:856–862PubMedCrossRefGoogle Scholar
  102. Ellington JE, Padilla AW, Vredenburgh WL, Dougherty EP, Foote RH (1991) Behavior of bull spermatozoa in bovine uterine tube epithelial cell co-culture an in vitro model for studying the cell interactions of reproduction. Theriogenology 35:977–989PubMedCrossRefGoogle Scholar
  103. Ellington JE, Ball BA, Yang X (1993a) Binding of stallion spermatozoa to the equine zona pellucida after co-culture with oviductal epithelial cells. J Reprod Fertil 98:203–208PubMedCrossRefGoogle Scholar
  104. Ellington JE, Ignotz GG, Ball BA, Meyers-Wallen VN, Currie WB (1993b) De novo protein synthesis by bovine uterine tube (oviduct) epithelial cells changes during co-culture with bull spermatozoa. Biol Reprod 48:851–856PubMedCrossRefGoogle Scholar
  105. Ellington JE, Meyers-Wallen VN, Ball BA (1995) Establishment of a coculture system for canine sperm and uterine tube epithelial cells. Vet Rec 136:542–543PubMedCrossRefGoogle Scholar
  106. Ellington JE, Evenson DP, Fleming JE, Brisbois RS, Hiss GA, Broder SJ, Wright RW Jr (1998) Coculture of human sperm with bovine oviduct epithelial cells decreases sperm chromatin structural changes seen during culture in media alone. Fertil Steril 69:643–649Google Scholar
  107. Ellington JE, Evenson DP, Wright RW Jr, Jones AE, Schneider CS, Hiss GA, Brisbois RS (1999) Higher-quality human sperm in a sample selectively attach to oviduct (fallopian tube) epithelial cells in vitro. Fertil Steril 71:924–929PubMedCrossRefGoogle Scholar
  108. Elliott RM, Lloyd RE, Fazeli A, Sostaric E, Georgiou AS, Satake N, Watson PF, Holt WV (2009) Effects of HSPA8, an evolutionarily conserved oviductal protein, on boar and bull spermatozoa. Reproduction 137:191–203PubMedCrossRefGoogle Scholar
  109. Ellis RJ (1987) Proteins as molecular chaperones. Nature 328:378–379PubMedCrossRefGoogle Scholar
  110. Ensslin M, Calvete JJ, Thole HH, Sierralta WD, Adermann K, Sanz L, Töpfer-Petersen E (1995) Identification by affinity chromatography of boar sperm membrane-associated proteins bound to immobilized porcine zona pellucida. Mapping of the phosphorylethanolamine-binding region of spermadhesin AWN. Biol Chem Hoppe Seyler 376:733–738PubMedCrossRefGoogle Scholar
  111. Eslaminejad MB, Valojerdi MR, Ashtiani SK, Eftekhari-Yazdi P (2007) Light and electron microscopic study of epithelial cells from the human oviduct and uterus subcultured on extracellular matrix gel. J Reprod Med 52:503–512PubMedGoogle Scholar
  112. Evans JP, Kopf GS (1998) Molecular mechanisms of sperm-egg interactions and egg activation. Andrologia 30:297–307PubMedCrossRefGoogle Scholar
  113. Eyestone WH, First NL (1989) Co-culture of early cattle embryos to the blastocyst stage with oviducal tissue or in conditioned medium. J Reprod Fertil 85:715–720PubMedCrossRefGoogle Scholar
  114. Eyestone WH, Jones JM, First NL (1991) Some factors affecting the efficacy of oviduct tissue-conditioned medium for the culture of early bovine embryos. J Reprod Fertil 92:59–64PubMedCrossRefGoogle Scholar
  115. Fazeli A, Duncan AE, Watson PF, Holt WV (1999) Sperm-Oviduct interaction: induction of capacitation and preferential binding of uncapacitated spermatozoa to oviductal epithelial cells in porcine species. Biol Reprod 60:879–886PubMedCrossRefGoogle Scholar
  116. Fazeli A, Elliott RM, Duncan AE, Moore A, Watson PF, Holt WV (2003) In vitro maintenance of boar sperm viability by a soluble fraction obtained from oviductal plasma membrane preparations. Reproduction 125:509–517PubMedCrossRefGoogle Scholar
  117. Fazeli A, Affara NA, Hubank M, Holt WV (2004) Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice. Biol Reprod 71:60–65PubMedCrossRefGoogle Scholar
  118. Felder CC, Glass M (1998) Cannabinoid receptors and their endogenous agonists. Annu Rev Pharmacol Toxicol 38:179–200PubMedCrossRefGoogle Scholar
  119. Fléchon JE, Hunter RH (1981) Distribution of spermatozoa in the utero-tubal junction and isthmus of pigs, and their relationship with the luminal epithelium after mating: a scanning electron microscope study. Tiss Cell 13:127–139CrossRefGoogle Scholar
  120. Forni M, Zannoni A, Tamanini C, Bacci ML (2003) Opposite regulation of clusterin and LH receptor in the swine corpus luteum during luteolysis. Reprod Nutr Dev 43:517–525PubMedCrossRefGoogle Scholar
  121. Francavilla F, Battista N, Barbonetti A, Vassallo MR, Rapino C, Antonangelo C, Pasquariello N, Catanzaro G, Barboni B, Maccarrone M (2009) Characterization of the endocannabinoid system in human spermatozoa and involvement of transient receptor potential vanilloid 1 receptor in their fertilizing ability. Endocrinol 150:4692–4700CrossRefGoogle Scholar
  122. Fukuda M (1991) Lysosomal membrane glycoproteins. J Biol Chem 266:21327–21330PubMedGoogle Scholar
  123. Gadella BM, Harrison RAP (2002) Capacitation induces cyclic adenosine 3′,5′-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells. Biol Reprod 67:340–350PubMedCrossRefGoogle Scholar
  124. Gadella BM, Lopes-Cardozo M, van Golde LMG, Colenbrander B, Gadella TW Jr (1995) Glycolipid migration from the apical to the equatorial subdomains of the sperm head plasma membrane precedes the acrosome reaction. Evidence for a primary capacitation event in boar spermatozoa. J Cell Biol 108:935–946Google Scholar
  125. Galantino-Homer H, Visconti PE, Kopf GS (1997) Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3′,5′-monophosphate-dependent pathway. Biol Reprod 56:707–719PubMedCrossRefGoogle Scholar
  126. Gandolfi F (1995) Functions of proteins secreted by oviduct epithelial cells. Microsc Res Tech 1–12Google Scholar
  127. Gandolfi F, Moor RM (1987) Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells. J Reprod Fertil 81:23–28PubMedCrossRefGoogle Scholar
  128. García EM, Vázquez JM, Parrilla I, Ortega MD, Calvete JJ, Sanz L, Martínez EA, Roca J, Rodríguez-Martínez H (2008) Localization and expression of spermadhesin PSP-I/PSP-II subunits in the reproductive organs of the boar. Int J Androl 31:408–417PubMedCrossRefGoogle Scholar
  129. Georgiou AS, Sostaric E, Wong CH, Snijders AP, Wright PC, Moore HD, Fazeli A (2005) Gametes alter the oviductal secretory proteome. Mol Cell Proteom 4:1785–1796CrossRefGoogle Scholar
  130. Georgiou AS, Snijders AP, Sostaric E, Aflatoonian R, Vázquez JL, Vázquez JM, Roca J, Martínez EA, Wright PC, Fazeli A (2007) Modulation of the oviductal environment by gametes. J Proteom Res 6:4656–4666CrossRefGoogle Scholar
  131. Gervasi MG, Rapanelli M, Ribeiro ML, Farina M, Billi S, Franchi AM, Pérez-Martínez S (2009) The endocannabinoid system in bull sperm and bovine oviductal epithelium: role of anandamide in sperm-oviduct interaction. Reproduction 137:403–414PubMedCrossRefGoogle Scholar
  132. Grad I, Picard D (2007) The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol 275:2–12PubMedCrossRefGoogle Scholar
  133. Green CE, Bredl J, Holt WV, Watson PF, Fazeli A (2001) Carbohydrate mediation of boar sperm binding to oviductal epithelial cells in vitro. Reproduction 122:305–315PubMedCrossRefGoogle Scholar
  134. Gualtieri R, Talevi R (2000) In vitro-cultured bovine oviductal cells bind acrosome-intact sperm and retain this ability upon sperm release. Biol Reprod 62:1754–1762PubMedCrossRefGoogle Scholar
  135. Gualtieri R, Talevi R (2003) Selection of highly fertilization-competent bovine spermatozoa through adhesion to the Fallopian tube epithelium in vitro. Reproduction 125:251–258PubMedCrossRefGoogle Scholar
  136. Gualtieri R, Boni R, Tosti E, Zagami M, Talevi R (2005) Intracellular calcium and protein tyrosine phosphorylation during the release of bovine sperm adhering to the fallopian tube epithelium in vitro. Reproduction 129:51–60PubMedCrossRefGoogle Scholar
  137. Gualtieri R, Mollo V, Duma G, Talevi R (2009) Redox control of surface protein sulfhydryls in bovine spermatozoa reversibly modulates sperm adhesion to the oviductal epithelium and capacitation. Reproduction 138:33–43PubMedCrossRefGoogle Scholar
  138. Guiochon-Mantel A, Delabre K, Lescop P, Milgrom E (1994) Nuclear localization signals also mediate the outward movement of proteins from the nucleus. Proc Natl Acad Sci USA 91:7179–7183PubMedCrossRefGoogle Scholar
  139. Guiochon-Mantel A, Lescop P, Christin-Maitre S, Loosfelt H, Perrot-Applanat M, Milgrom E (1991) Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J 10:3851–3859PubMedGoogle Scholar
  140. Gutiérrez A, Garde J, García-Artiga C, Vázquez I (1993) Ram spermatozoa cocultured with epithelial cell monolayers: an in vitro model for the study of capacitation and the acrosome reaction. Mol Reprod Dev 36:338–345PubMedCrossRefGoogle Scholar
  141. Guzhova I, Margulis B (2006) Hsp70 chaperone as a survival factor in cell pathology. Int Rev Cytol 254:101–149PubMedCrossRefGoogle Scholar
  142. Gwathmey TM, Ignotz GG, Mueller Jl, Manjunath P, Suarez SS (2006) Bovine seminal plasma proteins PDC-109, BSP-A3, and BSP-30-kda share functional roles in storing sperm in the oviduct. Biol Reprod 75:501–507Google Scholar
  143. Gwathmey TM, Ignotz GG, Suarez SS (2003) PDC-109 (BSP-A1/A2) promotes bull sperm binding to oviductal epithelium in vitro and may be involved in forming the oviductal sperm reservoir. Biol Reprod 69:809–815PubMedCrossRefGoogle Scholar
  144. Haase B, Schlötterer C, Ekhlasi-Hundrieser M, Kuiper H, Distl O, Töpfer-Petersen E, Leeb T (2005) Evolution of the spermadhesin gene family. Gene 352:20–29PubMedCrossRefGoogle Scholar
  145. Habayeb OM, Bell SC, Konje JC (2002) Endogenous cannabinoids: metabolism and their role in reproduction. Life Sci 70:1963–1977PubMedCrossRefGoogle Scholar
  146. Hadjisavas M, Armstrong DT, Seamark RF (1994) Purification of cell–cell adhesion regulator from porcine seminal vesicle fluid. Biochem Biophys Res Commun 205:1206–1216PubMedCrossRefGoogle Scholar
  147. Hafez ESE (1993) Anatomy of female reproductive tract. In: Hafez ESE (ed) Reproduction in farm animals, 6th edn. Lea and Febiger, PhiladelphiaGoogle Scholar
  148. Hamlett WC, Musick JA, Hysell CK, Sever DM (2002) Uterine epithelial-sperm interaction, endometrial cycle and sperm storage in the terminal zone of the oviducal gland in the placental smoothhound, Mustelus canis. J Exp Zool 292:129–144PubMedCrossRefGoogle Scholar
  149. Han JH, Choi CS, Kim MY, Chun YJ (2007) Differential gene expression by styrene in rat reproductive tissue. J Toxicol Environ Health A 70:1259–1263PubMedCrossRefGoogle Scholar
  150. Hang H, Fox MH (1994) Low pH suppresses synthesis of heat-shock proteins and thermotolerance. Radiat Res 140:24–30PubMedCrossRefGoogle Scholar
  151. Harney JP, Smith LC, Simmen RC, Fliss AE, Bazer FW (1994) Retinol-binding protein: immunolocalization of protein and abundance of messenger ribonucleic acid in conceptus and maternal tissues during pregnancy in pigs. Biol Reprod 50:1126–1135PubMedCrossRefGoogle Scholar
  152. Harrison RAP (1996) Capacitation mechanisms, and the role of capacitation as seen in eutherian mammals. Reprod Fertil Dev 8:581–594PubMedCrossRefGoogle Scholar
  153. Havarinen M, Passinen S, Syvälä H, Pasanen S, Manninen T, Tuohimaa P, Ylikomi T (2001) Heat shock protein 90 and the nuclear transport of progesterone receptor. Cell Stress Chaperones 6:256–262CrossRefGoogle Scholar
  154. Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384PubMedCrossRefGoogle Scholar
  155. Hirayoshi K, Kudo H, Takechi H, Nakai A, Iwamatsu A, Yamada KM, Nagata K (1991) HSP47: a tissue specific, transformation-sensitive, collagen binding heat shock protein of chicken embryo fibroblasts. Mol Cell Biol 11:4036–4044PubMedGoogle Scholar
  156. Holley SJ, Yamamoto KR (1995) A role for Hsp90 in retinoid receptor signal transduction. Mol Biol Cell 6:1833–1842PubMedGoogle Scholar
  157. Holt WV, Lloyd RE (2010) Sperm storage in the vertebrate female reproductive tract: how does it work so well? Theriogenology 73:713–722PubMedCrossRefGoogle Scholar
  158. Holt WV, Hernández M, Warrell L, Satake N (2010) The long and the short of sperm selection in vitro and in vivo: swim-up techniques select for the longer and faster swimming mammalian sperm. J Evol Biol 23:598–608PubMedCrossRefGoogle Scholar
  159. Hosken DJ, Stockley P (2003) Benefits of polyandry: a life history perspective. BMC Evol Biol 33:173–194Google Scholar
  160. Hou ML, Huang SY, Lai YK, Lee WC (2008) Geldanamycin augments nitric oxide production and promotes capacitation in boar spermatozoa. Anim Reprod Sci 104:56–68PubMedCrossRefGoogle Scholar
  161. Huang SY, Kuo YH, Lee WC, Tsou HL, Lee YP, Chang HL, Wu JJ, Yang PC (1999) Substantial decrease of heat-shock protein 90 precedes the decline of sperm motility during cooling of boar spermatozoa. Theriogenology 51:1007–1016PubMedCrossRefGoogle Scholar
  162. Hugentobler S, Morris DG, Kane MT, Sreenan JM (2004) In situ oviduct and uterine pH in cattle. Theriogenology 61:1419–1427PubMedCrossRefGoogle Scholar
  163. Hunt C, Morimoto RI (1985) Conserved features of eukaryotic Hsp70 genes revealed by comparison with the nucleotide sequence of human Hsp70. Proc Natl Acad Sci USA 82:6455–6459PubMedCrossRefGoogle Scholar
  164. Hunter RH (1981) Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation. J Reprod Fertil 63:109–117PubMedCrossRefGoogle Scholar
  165. Hunter RH (1984) Pre-ovulatory arrest and peri-ovulatory redistribution of competent spermatozoa in the isthmus of the pig oviduct. J Reprod Fertil 72:203–211PubMedCrossRefGoogle Scholar
  166. Hunter RH (1988) Transport of gametes, selection of spermatozoa and gamete lifespans in the female tracts. In: Hunter RH (ed) The fallopian tubes. Springer, New York, pp 53–80Google Scholar
  167. Hunter RH (1990) Fertilization of pig eggs in vivo and in vitro. J Reprod Fertil Suppl 40:211–226PubMedGoogle Scholar
  168. Hunter RH (1995) Ovarian endocrine control of sperm progression in the fallopian tubes. Oxf Rev Reprod Biol 17:85–124Google Scholar
  169. Hunter RH (1996) Ovarian control of very low sperm/egg ratios at the commencement of mammalian fertilisation to avoid polyspermy. Mol Reprod Dev 44:417–422PubMedCrossRefGoogle Scholar
  170. Hunter RH (1998) Have the Fallopian tubes a vital role in promoting fertility? Acta Obstet Gynecol Scand 77:475–486PubMedCrossRefGoogle Scholar
  171. Hunter RH (2002) Vital aspects of Fallopian tube physiology in pigs. Reprod Domest Anim 37:186–190PubMedCrossRefGoogle Scholar
  172. Hunter RH (2003) Reflections upon sperm-endosalpingeal and sperm-zona pellucida interactions in vivo and in vitro. Reprod Dom Anim 38:147–154CrossRefGoogle Scholar
  173. Hunter RH (2005) The fallopian tubes in domestic mammals: how vital is their physiological activity? Reprod Nutr Dev 45:281–290PubMedCrossRefGoogle Scholar
  174. Hunter RH (2008) Sperm release from oviduct epithelial binding is controlled hormonally by peri-ovulatory graafian follicles. Mol Repod Dev 75:167–174CrossRefGoogle Scholar
  175. Hunter RH, Nichol R (1983) Transport of spermatozoa in the sheep oviduct: preovulatory sequestering of cells in the caudal isthmus. J Exp Zool 228:121–128PubMedCrossRefGoogle Scholar
  176. Hunter RH, Rodríguez-Martínez H (2004) Capacitation of mammalian spermatozoa in vivo, with a specific focus on events in the fallopian tubes. Mol Reprod Dev 67:243–250PubMedCrossRefGoogle Scholar
  177. Hunter RH, Cook B, Poyser NL (1983) Regulation of oviduct function in pigs by local transfer of ovarian steroids and prostaglandins: a mechanism to influence sperm transport. Eur J Obstet Gynecol Reprod Biol 14:225–232PubMedCrossRefGoogle Scholar
  178. Hunter RH, Fléchon B, Fléchon JE (1991) Distribution, morphology and epithelial interactions of bovine spermatozoa in the oviduct before and after ovulation: a scanning electron microscopy study. Tissue Cell 23:641–656PubMedCrossRefGoogle Scholar
  179. Hunter RH, Huang WT, Holtz W (1998) Regional influences of the Fallopian tubes on the role of boar sperm capacitation in surgically inseminated gilts. J Reprod Fertil 114:17–23PubMedCrossRefGoogle Scholar
  180. Hunter RH, Petersen HH, Greve T (1999) Ovarian follicular fluid, progesterone and Ca2+ ion influences on sperm release from the Fallopian tube reservoir. Mol Reprod Dev 54:283–291PubMedCrossRefGoogle Scholar
  181. Huo R, Zhu YF, Ma X, Lin M, Zhou ZM, Sha JH (2004) Differential expression of glucose-regulated protein 78 during spermatogenesis. Cell Tissue Res 316:359–367PubMedCrossRefGoogle Scholar
  182. Ibrahim NM, Gilbert GR, Loseth KJ, Crabo BG (2000) Correlation between clusterin.-positive spermatozoa determined by flow cytometry in bull semen and fertility. J Androl 21:887–894PubMedGoogle Scholar
  183. Ignotz GG, Lo MC, Perez CL, Gwathmey TM, Suarez SS (2001) Characterization of a fucose-binding protein from bull sperm and seminal plasma that may be responsible for formation of the oviductal sperm reservoir. Biol Reprod 64:1806–1811PubMedCrossRefGoogle Scholar
  184. Ignotz GG, Cho MY, Suarez SS (2007) Annexins are candidate oviductal receptors for bovie sperm surface proteins and thus may serve to hold bovine sperm in c ovidcutal reservoir. Biol Reprod 77:906–913PubMedCrossRefGoogle Scholar
  185. Ijaz A, Lambert R, Sirard MA (1994) In vitro-cultured bovine granulosa and oviductal cells secrete sperm motility-maintaining factors(s). Mol Reprod Dev 37:54–60PubMedCrossRefGoogle Scholar
  186. Ikeda LJ, Kaneda S, Kuwabara K, Ogawa S, Kobayashi T, Matsumoto M, Yura T, Yanagi H (1997) Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP 150. Biochem Biophys Res Commun 230:94–99PubMedCrossRefGoogle Scholar
  187. Imamoto N, Matsuoka Y, Kurihara T, Kohno K, Miyagi M, Sakiyama F, Okada Y, Tsunasawa S, Yoneda Y (1992) Antibodies against 70-kD heat shock cognate protein inhibit mediated nuclear import of karyophilic proteins. J Cell Biol 119:1047–1061PubMedCrossRefGoogle Scholar
  188. Inano K, Curtis SW, Korach KS, Omata S, Horigome T (1994) Heat shock protein 90 strongly stimulates the binding of purified estrogen receptor to its responsive element. J Biochem 116:759–766PubMedGoogle Scholar
  189. Jäättelä M, Wissing D (1992) Emerging role of heat shock proteins in biology and medicine. Ann Med 24:249–258PubMedCrossRefGoogle Scholar
  190. Jakob U, Buchner J (1994) Assisting spontaneity: the role of HSP90AA1 and small Hsps as molecular chaperones. Trends Biochem Sci 19:205–211PubMedCrossRefGoogle Scholar
  191. Jamora C, Dennert G, Lee AS (1996) Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA 93:7690–7694PubMedCrossRefGoogle Scholar
  192. Jansen S, Ekhlasi-Hundrieser M, Töpfer-Petersen E (2001) Sperm adhesion molecules: structure and function. Cells Tissues Organs 168:82–92PubMedCrossRefGoogle Scholar
  193. Javid B, MacAry PA, Lehner PJ (2007) Structure and function: heat shock proteins and adaptive immunity. J Immunol 179:2035–2040PubMedGoogle Scholar
  194. Jeoung DI, Chen S, Windsor J, Pollack RE (1991) Human major HSP70 protein complements the localization and functional defects of cytoplasmic mutant SV40 T antigen in Swiss 3T3 mouse fibroblast cells. Genes Dev 5:2235–2244PubMedCrossRefGoogle Scholar
  195. Jeremias JC, David SS, Toth M, Witkin SS (1997) Induction of messenger RNA for the 70 kDa heat shock protein in HeLa cells and the human endocervix following exposure to semen: implications for antisperm antibody production and susceptibility to sexually tansmitted infections. Hum Reprod 12:1915–1919PubMedCrossRefGoogle Scholar
  196. Jeremias JC, Bongiovanni AM, Witkin SS (1999) Induction of heat shock protein expression in cervical epithelial cells by human semen. Infect Dis Obstetr Gynecol 7:17–22Google Scholar
  197. Jez J, Chen J, Rastelli G, Stroud R, Santi D (2003) Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem Biol 10:361–368PubMedCrossRefGoogle Scholar
  198. Jindal S, Dudani AK, Singh B, Harley CB, Gupta RS (1989) Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol 9:2279–2283PubMedGoogle Scholar
  199. Jiwakanon J, Persson E, Kaeoket K, Dalin AM (2005) The sow endosalpinx at different stages of the oestrous cycle and at anoestrus: studies on morphological changes and infiltration by cells of the immune system. Reprod Domest Anim 40:28–39PubMedCrossRefGoogle Scholar
  200. Johansson M, Tienthai P, Rodríguez-Martínez H (2000) Histochemistry and ultrastructure of the intraluminal mucus in the sperm reservoir of the pig oviduct. J Reprod Dev 46:183–192CrossRefGoogle Scholar
  201. Johnson JL, Beito TG, Krco CJ, Toft DO (1994) Characterization of a novel 23-kilodalton protein of inactive progesterone receptor complexes. Mol Cell Biol 14:1956–1963PubMedGoogle Scholar
  202. Jonáková V, Kraus M, Veselský L, Čechová D, Bezouška K, Tichá M (1998) Spermadhesin of the AQN and AWN family, DQH sperm surface protein and HNK protein in the heparin-binding fraction of boar seminal plasma. J Reprod Fertil 114:25–34PubMedCrossRefGoogle Scholar
  203. Jonáková V, Manásková P, Kraus M, Liberda J, Tichá M (2000) Sperm surface proteins in mammalian fertilization. Mol Reprod Dev 56(Suppl 2):275–277PubMedCrossRefGoogle Scholar
  204. Jonáková V, Tichá M (2004) Boar seminal plasma proteins and their binding properties. Collect Czech Chem Commun 69:461–475CrossRefGoogle Scholar
  205. Jonáková V, Manásková P, Tichá M (2006) Separation, characterization and identification of boar seminal plasma proteins. J Chromatogr B Analyt Technol Biomed Life Sci 849:307–314PubMedGoogle Scholar
  206. Jones SE, Jomary C (2002) Clusterin. Int J Biochem Cell Biol 34:427–431PubMedCrossRefGoogle Scholar
  207. Juyena NS, Stelletta C (2012) Seminal plasma of ruminants: an essential attribute to spermatozoa. J Androl 33:536–551PubMedCrossRefGoogle Scholar
  208. Kakar M, Kanwal C, Davis JR, Li H, Lim CS (2006) Geldanamycin, an inhibitor of Hsp90, blocks cytoplasmic retention of progesterone receptors and glucocorticoid receptors via their respective ligand binding domains. AAPS J 8:718–728CrossRefGoogle Scholar
  209. Kaltner H, Gabius HJ (2001) Animal lectins: from initial description to elaborated structural and functional classification. Adv Exp Med Biol 491:79–94PubMedCrossRefGoogle Scholar
  210. Kamal A, Boehm MF, Burrows FJ (2004) Therapeutic and diagnostic implications of HSP90AA1 activation. Trends Mol Med 10:283–290PubMedCrossRefGoogle Scholar
  211. Kan FW, Esperanzate PW (2006) Surface mapping of binding of oviductin to the plasma membrane of golden hamster spermatozoa during in vitro capacitation and acrosome reaction. Mol Reprod Dev 73:756–766PubMedCrossRefGoogle Scholar
  212. Kano K, Miyano T, Kato S (1994) Effect of oviductal epithelial cells on fertilization of pig oocytes in vitro. Theriogenology 42:1061–1068PubMedCrossRefGoogle Scholar
  213. Kawakami E, Kashiwagi C, Hori T, Tsutsui T (2001) Effects of canine oviduct epithelial cells on movement and capacitation of homologous spermatozoa in vitro. Anim Reprod Sci 68:121–131PubMedCrossRefGoogle Scholar
  214. Kervancioglu ME, Djahanbakhch O, Aitken RJ (1994) Epithelial cell coculture and the induction of sperm capacitation. Fertil Steril 61:1100–1108Google Scholar
  215. Khalil AA, Petrunkina AM, Sahin E, Waberski D, Töpfer-Petersen E (2006) Enhanced binding of sperm with superior volume regulation to oviductal epithelium. J Androl 27:754–765PubMedCrossRefGoogle Scholar
  216. Killian JG (2004) Evidence for the role of oviduct secretions in sperm function, fertilization and embryo development. Anim Reprod Sci 82:141–153PubMedCrossRefGoogle Scholar
  217. Kim J, Hajjar KA (2002) Annexin II: a plasminogen–plasminogen activator co-receptor. Front Biosci 7:d341–d348PubMedCrossRefGoogle Scholar
  218. Kim S, Schilke B, Craig EA, Horwich AL (1998) Folding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins. Proc Natl Acad Sci USA 95:12860–12865PubMedCrossRefGoogle Scholar
  219. Kimura N, Konno Y, Miyoshi K, Matsumoto H, Sato E (2002) Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation. Biol Reprod 66:707–717PubMedCrossRefGoogle Scholar
  220. King RS, Killian GJ (1994) Purification of bovine estrus-associated protein and localization of binding on sperm. Biol Reprod 51:34–42CrossRefGoogle Scholar
  221. King RS, Anderson SH, Killian GJ (1994) Effect of bovine oviductal estrus-associated protein on the ability of sperm to capacitate and fertilizing oocytes. J Androl 15:468–478PubMedGoogle Scholar
  222. Kirchhoff C, Schroter S (2001) New insights into the origin, structure and role of CD52: a major component of the mammalian sperm glycocalyx. Cells Tissues Organs 168:93–104PubMedCrossRefGoogle Scholar
  223. Knoblauch R, Garabedian MJ (1999) Role for Hsp90-associated cochaperone p23 in estrogen receptor signal transduction. Mol Cell Biol 19:3748–3759PubMedGoogle Scholar
  224. Kodithuwakku SP, Miyamoto A, Wijayagunawardane MP (2007) Spermatozoa stimulate prostaglandin synthesis and secretion in bovine oviductal epithelial cells. Reproduction 133:1087–1094PubMedCrossRefGoogle Scholar
  225. Komatsu T, Konishi I, Fukumoto M, Nanbu K, Koshiyama M, Mandai M, Mori T (1997) Messenger ribonucleic acid expression of heat shock proteins HSP70 and HSP90 in human endometrium and myometrium during the menstrual cycle. J Clin Endocrinol Metab 82:1385–1389PubMedCrossRefGoogle Scholar
  226. Koshiyama M, Konishi I, Nanbu K, Mandai M, Komatsu T, Yamamoto S, Mori T, Fujii S (1995) Immunohistochemical localization of heat shock proteins HSP70 and HSP90 in the human endometrium, correlation with sex steroid receptors and Ki-67 antigen expression. J Clin Endocrinol Metab 80:1106–1112PubMedCrossRefGoogle Scholar
  227. Kost SL, Smith DF, Sullivan WP, Welch WJ, Toft DO (1989) Binding of heat shock proteins to the avian progesterone receptor. Mol Cell Biol 9:3829–3838PubMedGoogle Scholar
  228. Kouba AJ, Abeydeera LR, Alvarez IM, Day BN, Buhi WC (2000) Effects of the porcine oviduct-specific glycoprotein on fertilization, polyspermy, and embryonic development in vitro. Biol Reprod 63:242–250PubMedCrossRefGoogle Scholar
  229. Koya Y, Munehara H, Takano K (2002) Sperm storage and motility in the ovary of the marine sculpin Alcichthys alcilcornis (Teleostei: Scorpaeniformes), with internal gametic association. J Exp Zool 292:145–155PubMedCrossRefGoogle Scholar
  230. Kratz E, Poland DC, van Dijk W, Katnik-Prastowska I (2003) Alterations of branching and differential expression of sialic acid on α-1-acid glycoprotein in human seminal plasma. Clin Chim Acta 331:87–95PubMedCrossRefGoogle Scholar
  231. Krishnan V, Bane SM, Kawle PD, Naresh KN, Kalraiya RD (2005) Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clin Exp Metastasis 22:11–24PubMedCrossRefGoogle Scholar
  232. Kumaresan A, Ansari MR, Garg A, Kataria M (2006) Effect of oviductal proteins on sperm functions and lipid peroxidation levels during cryopreservation in buffaloes. Anim Reprod Sci 93:246–257PubMedCrossRefGoogle Scholar
  233. Kwok SC, Yang D, Dai G, Soares MJ, Chen S, McMurtry JP (1993) Molecular cloning and sequence analysis of two porcine seminal proteins, PSP-I and PSP-II: new members of the spermadhesin family. DNA Cell Biol 12:605–610PubMedCrossRefGoogle Scholar
  234. Lachance C, Bailey JL, Leclerc P (2007) Expression of Hsp60 and HSPA5 in the human endometrium and oviduct, and their effect on sperm functions. Hum Reprod 22:2606–2614PubMedCrossRefGoogle Scholar
  235. Lapointe S, Sirard MA (1996) Importance of calcium for the binding of oviductal fluid proteins to the membranes of bovine spermatozoa. Mol Reprod Dev 44:234–240PubMedCrossRefGoogle Scholar
  236. Lapointe S, Sullivan R, Sirard MA (1998) Binding of a bovine oviductal fluid catalase to mammalian spermatozoa. Biol Reprod 58:747–753PubMedCrossRefGoogle Scholar
  237. Lee AS (1992) Mammalian stress response: induction of the glucose-regulated protein family. Curr Opin Cell Biol 4:267–273PubMedCrossRefGoogle Scholar
  238. Lee HS, Aumais J, White JH (1996) Hormone-dependent transactivation by estrogen receptor chimeras that do not interact with Hsp90: evidence for transcriptional repressors. J Biol Chem 271:25727–25730PubMedCrossRefGoogle Scholar
  239. Lee KF, Yeung WS (2006) Gamete/embryo-oviduct interactions: implications on in vitro culture. Hum Fertil (Camb) 9:137–143CrossRefGoogle Scholar
  240. Lee KF, Yao YQ, Kwok KL, Xu JS, Yeung WS (2002) Early developing embryos affect the gene expression patterns in the mouse oviduct. Biochem Biophys Res Commun 292:564–570PubMedCrossRefGoogle Scholar
  241. Lee YL, Lee KF, Xu JS, He QY, Chiu JF, Lee WM, Luk JM, Yeung WS (2004) The embryotrophic activity of oviductal cell-derived complement C3b and iC3b, a novel function of complement protein in reproduction. J Biol Chem 279:12763–12768PubMedCrossRefGoogle Scholar
  242. Leeb T (2007) The horse genome project–sequence based insights into male reproductive mechanisms. Reprod Domest Anim 42(Suppl 2):45–50PubMedCrossRefGoogle Scholar
  243. Leese HJ (1988) The formation and function of oviduct fluid. J Reprod Fertil 82:843–856PubMedCrossRefGoogle Scholar
  244. Leese HJ, Tay JI, Reischl J, Downing SJ (2001) Formation of Fallopian tubal fluid: role of a neglected epithelium. Reproduction 121:339–346PubMedCrossRefGoogle Scholar
  245. Lefebvre R, Suarez SS (1996) Effect of capacitation on bull sperm binding to homologous oviductal epithelium. Biol Reprod 54:575–582PubMedCrossRefGoogle Scholar
  246. Lefebvre R, Lo MC, Suarez SS (1997) Bovine sperm binding to oviductal epithelium involves fucose recognition. Biol Reprod 56:1198–1204PubMedCrossRefGoogle Scholar
  247. Lemansky P, Brix K, Herzog V (1999) Subcellular distribution, secretion, and posttranslational modifications of clusterin in thyrocytes. Exp Cell Res 251:147–155PubMedCrossRefGoogle Scholar
  248. Lewis SE, Maccarrone M (2009) Endocannabinoids, sperm biology and human fertility. Pharmacol Res 60:126–131PubMedCrossRefGoogle Scholar
  249. Liberda J, Maňásková P, Švesták M, Jonáková V, Tichá M (2002) Immobilization of L-glyceryl phosphorylcholine: isolation of phosphorylcholine-binding proteins from seminal plasma. J Chromatogr B Analyt Technol Biomed Life Sci 770:101–110PubMedCrossRefGoogle Scholar
  250. Liberda J, Maňásková P, Prelovská L, Ticha M, Jonáková V (2006) Saccharide-mediated interactions of boar sperm surface proteins with components of the porcine oviduct. J Reprod Immunol 71:112–125PubMedCrossRefGoogle Scholar
  251. Lim JM, Hansel W (1998) Improved development of in vitro-derived bovine embryos by use of a nitric oxide scavenger in a cumulusgranulosa cell coculture system. Mol Reprod Dev 50:45–53PubMedCrossRefGoogle Scholar
  252. Lindblom B, Hamberger L, Wiqvist N (1978) Differentiated contractile effects of prostaglandins E and F on the isolated circular and longitudinal smooth muscle of the human oviduct. Fertil Steril 30:553–559PubMedGoogle Scholar
  253. Lippes J, Wagh PV (1989) Human oviductal fluid (hOF) proteins. IV. Evidence for hOF proteins binding to human sperm. Fertil Sterl 51:89–94Google Scholar
  254. Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS (1994) The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr 4:1–18PubMedCrossRefGoogle Scholar
  255. Liu DY, Garrett C, Baker HWG (2006) Acrosome-reacted human sperm in insemination medium do not bind to the zona pellucida of human oocytes. Int J Androl 29:475–481PubMedCrossRefGoogle Scholar
  256. Lloyd RE, Elliott RM, Fazeli A, Watson PF, Holt WV (2009) Effects of oviductal proteins, including heat shock 70 kDa protein 8, on survival of ram spermatozoa over 48 h in vitro. Reprod Fertil Dev 21:408–418PubMedCrossRefGoogle Scholar
  257. Lloyd RE, Fazeli A, Watson PF, Holt WV (2012) The oviducal protein, heat-shock 70-kDa protein 8, improves the long-term survival of ram spermatozoa during storage at 17 °C in a commercial extender. Reprod Fertil Dev 24:543–549PubMedCrossRefGoogle Scholar
  258. Long EL, Sonstegard TS, Long JA, Van Tassell CP, Zuelke KA (2003) Serial analysis of gene expression in turkey sperm storage tubules in the presence and absence of resident sperm. Biol Reprod 69:469–474PubMedCrossRefGoogle Scholar
  259. Luan Y, Xu W (2007) The structure and main function of aminopeptidase N. Curr Med Chem 14:639–647PubMedCrossRefGoogle Scholar
  260. Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. Review. J Chem Neuroanat 28:51–65PubMedCrossRefGoogle Scholar
  261. Maccarrone M, Cecconi S, Rossi G, Battista N, Pauselli R, Finazzi-Agrò A (2003) Anandamide activity and degradation are regulated by early postnatal aging and follicle-stimulating hormone in mouse Sertoli cells. Endocrinology 144:20–28PubMedCrossRefGoogle Scholar
  262. Maccarrone M, Barboni B, Paradisi A, Bernabò N, Gasperi V, Pistilli MG, Fezza F, Lucidi P, Mattioli M (2005) Characterization of the endocannabinoid system in boar spermatozoa and implications for sperm capacitation and acrosome reaction. J Cell Sci 118:4393–4404PubMedCrossRefGoogle Scholar
  263. Macer DR, Koch GL (1988) Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J Cell Sci 91:61–70PubMedGoogle Scholar
  264. Madej A, Madsen MT, Brandt Y, Kindahl H, Einarsson S (2005) Stress related effects on reproductive capacity of pigs. J Anim Feed Sci 14(Suppl 1):205–212Google Scholar
  265. Maňásková P, Jonáková V (2008) Localization of porcine seminal plasma (PSP) proteins in the boar reproductive tract and spermatozoa. J Reprod Immunol 78:40–48PubMedCrossRefGoogle Scholar
  266. Maňásková P, Liberda J, Tichá M, Jonáková V (2000) Aggregated and monomeric forms of proteins of boar seminal plasma: characterization and binding properties. Folia Biol (Prague) 46:143–151Google Scholar
  267. Maňásková P, Pěknicová J, Elzeinová F, Tichá M, Jonáková V (2007) Origin, localization and binding abilities of boar DQH sperm surface protein tested by specific monoclonal antibodies. J Reprod Immunol 74:103–113PubMedCrossRefGoogle Scholar
  268. Manjunath P, Bergeron A, Lefebvre J, Fan J (2007) Seminal plasma proteins: functions and interaction with protective agents during semen preservation. Soc Reprod Fertil Suppl 65:217–228PubMedGoogle Scholar
  269. Manjunath P, Chandonnet L, Leblond E, Desnoyers L (1994) Major proteins of bovine seminal vesicles bind to spermatozoa. Biol Reprod 50:27–37PubMedCrossRefGoogle Scholar
  270. Mao C, Tai WC, Bai Y, Poizat C, Lee AS (2006) In vivo regulation of HSPA5/BiP transcription embryonic heart. Role of the endoplasmic reticulum stress response element. J Biol Chem 281:8877–8887PubMedCrossRefGoogle Scholar
  271. Mariani ML, Souto M, Fanelli MA, Ciocca DR (2000) Constitutive expression of heat shock proteins hsp25 and hsp70 in the rat oviduct during neonatal development, the oestrous cycle and early pregnancy. J Reprod Fertil 120:217–223PubMedCrossRefGoogle Scholar
  272. Marini PE, Cabada MO (2003) One step purification and biochemical characterization of a spermatozoa-binding protein from porcine oviductal epithelial cells. Mol Reprod Dev 66:383–390PubMedCrossRefGoogle Scholar
  273. Marquez B, Suarez SS (2004) Different signaling pathways in bovine sperm regulate capacitation and hyperactivation. Biol Reprod 70:1626–1633PubMedCrossRefGoogle Scholar
  274. Mburu JN, Einarsson S, Lundeheim N, Rodríguez-Martínez H (1996) Distribution, number and membrane integrity of spermatozoa in the pig oviduct in relation to spontaneous ovulation. Anim Reprod Sci 45:109–121PubMedCrossRefGoogle Scholar
  275. Mburu JN, Rodríguez-Martínez H, Einarsson S (1997) Changes in sperm ultrastructure and localization in the porcine oviduct around ovulation. Anim Reprod Sci 47:137–148PubMedCrossRefGoogle Scholar
  276. McCauley TC, Buhi WC, Wu GM, Mao J, Caamaño JN, Didion BA, Day BN (2003) Oviduct-specific glycoprotein modulates sperm-zona binding and improves efficiency of porcine fertilization in vitro. Biol Reprod 69:828–834PubMedCrossRefGoogle Scholar
  277. McNutt TL, Killian GJ (1991) Influence of bovine follicular and oviduct fluids on sperm capacitation in vitro. J Androl 12:244–252PubMedGoogle Scholar
  278. McNutt TL, Olds-Clarke P, Way AL, Suarez SS, Killian GJ (1994) Effect of follicular or oviductal fluids on movement characteristics of bovine sperm during capacitation in vitro. J Androl 15:328–335PubMedGoogle Scholar
  279. McPartland JM, Glass M, Pertwee RG (2007) Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences. Br J Pharmacol 152:583–593PubMedCrossRefGoogle Scholar
  280. Melo LM, Teixeira DI, Havt A, Da Cunha RM, Martins DB, Castelletti CH, De Souza PR, Filho JL, Freitas VJ, Cavada BS, Rádis-Baptista G (2008) Buck (Capra hircus) genes encode new members of the spermadhesin family. Mol Reprod Dev 75:8–16PubMedCrossRefGoogle Scholar
  281. Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E, Auricchio F (1996) Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 15:1292–1300PubMedGoogle Scholar
  282. Miller H, Poon S, Hibbert B, Rayner K, Chen YX, O’Brien ER (2005) Modulation of estrogen signaling by the novel interaction of heat shock protein 27, a biomarker for atherosclerosis, and estrogen receptor beta: mechanistic insight into the vascular effects of estrogens. Arterioscler Thromb Vasc Biol 25:10–14CrossRefGoogle Scholar
  283. Morales P, Palma V, Salgado AM, Villalón M (1996) Sperm interaction with human oviductal cells in vitro. Hum Reprod 11:1504–1509PubMedCrossRefGoogle Scholar
  284. Morano KA, Thiele DJ (1999) Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expr 7:271–282PubMedGoogle Scholar
  285. Moras D, Gronemeyer H (1998) The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol 10:384–391PubMedCrossRefGoogle Scholar
  286. Moura AA, Chapman DA, Koc H, Killian GJ (2007) A comprehensive proteomic analysis of the accessory sex gland fluid from mature Holstein bulls. Anim Reprod Sci 98:169–188PubMedCrossRefGoogle Scholar
  287. Mugnier S, Kervella M, Douet C, Canepa S, Pascal G, Deleuze S, Duchamp G, Monget P, Goudet G (2009) The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin involved? Reprod Biol Endocrinol 7:129PubMedCrossRefGoogle Scholar
  288. Müller P, Erlemann KR, Muller K, Calvete JJ, Töpfer-Petersen E, Marienfeld K, Herrmann A (1998) Biophysical characterization of the interaction of bovine seminal plasma protein PDC-109 with phospholipid vesicles. Eur Biophys J 27:33–41PubMedCrossRefGoogle Scholar
  289. Müller P, Greube A, Töpfer-Petersen E, Herrmann A (2002) Influence of the bovine seminal plasma protein PDC-109 on cholesterol in the presence of phospholipids. Eur Biophys J 31:438–447PubMedCrossRefGoogle Scholar
  290. Munro S, Pelham HRB (1986) An hsp70-like protein in the ER: identity with the 78 kDa glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300PubMedCrossRefGoogle Scholar
  291. Murray SC, Smith TT (1997) Sperm interaction with the Fallopian tube apical membrane enhances sperm motility and delays capacitation. Fertil Steril 68:351–357PubMedCrossRefGoogle Scholar
  292. Mwanza AM, Madej A, Kindahl H, Lundeheim N, Einarsson S (2000a) Postovulatory effect of repeated administration of ACTH on the contractile activity of the oviduct, ova transport and endocrine status of recently ovulated and unrestrained sows. Theriogenology 54:1305–1316PubMedCrossRefGoogle Scholar
  293. Mwanza AM, Englund P, Kindahl H, Lundeheim N, Einarsson S (2000b) Effects of post-ovulatory food deprivation on the hormonal profiles, activity of the oviduct and ova transport in sows. Anim Reprod Sci 59:185–199PubMedCrossRefGoogle Scholar
  294. Miyake H, Hara I, Arakawa S, Kamidono S (2000) Stress protein GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cells. J Cell Biochem 77:396–408PubMedCrossRefGoogle Scholar
  295. Naaby-Hansen S, Diekman A, Shetty J, Flickinger CJ, Westbrook A, Herr JC (2010) Identification of calcium-binding proteins associated with the human sperm plasma membrane. Reprod Biol Endocrinol 8:6PubMedCrossRefGoogle Scholar
  296. Nagai T, Moor RM (1990) Effect of oviduct cells on the incidence of polyspermy in pig eggs fertilized in vitro. Mol Reprod Dev 26:377–382PubMedCrossRefGoogle Scholar
  297. Nakamoto H, Vígh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64:294–306PubMedCrossRefGoogle Scholar
  298. Nakanishi T, Isotani A, Yamaguchi R, Ikawa M, Baba T, Suarez SS, Okabe M (2004) Selective passage through the uterotubal junction of sperm from a mixed population produced by chimeras of calmegin-knockout and wild-type male mice. Biol Reprod 71:959–965PubMedCrossRefGoogle Scholar
  299. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424PubMedCrossRefGoogle Scholar
  300. Neubaum DM, Wolfner MF (1999) Wise, winsome, or weird? Mechanisms of sperm storage in female animals. Curr Top Dev Biol 41:67–97PubMedCrossRefGoogle Scholar
  301. Nimtz M, Grabenhorst E, Conradt HS, Sanz L, Calvete JJ (1999) Structural characterization of the oligosaccharide chains of native and crystallized boar seminal plasma spermadhesin PSP-I and PSP-II glycoforms. Eur J Biochem 265:703–718PubMedCrossRefGoogle Scholar
  302. Nip MMC, Miller D, Taylor PV, Gannon MJ, Hancock KW (1994) Expression of heat shock protein 70 kDa in human endometrium of normal and infertile women. Hum Reprod 9:1253–1256PubMedGoogle Scholar
  303. Nishikimi A, Yamada M, Minami N, Utsumi K (1997) Evaluation of acrosomal status of bovine spermatozoa using concanavalin a lectin. Theriogenology 48:1007–1016PubMedCrossRefGoogle Scholar
  304. Oliphant G, Cabot C, Ross P, Marta J (1984) Control of the humoral immune system within the rabbit oviduct. Biol Reprod 31:205–212PubMedCrossRefGoogle Scholar
  305. Oliveira RG, Tomasi L, Rovasio RA, Giojalas LC (1999) Increased velocity and induction of chemotactic response in mouse spermatozoa by follicular and oviductal fluids. J Reprod Fertil 115:23–27PubMedCrossRefGoogle Scholar
  306. Oñate SA, Estes PA, Welch WJ, Nordeen SK, Edwards DP (1991) Evidence that heat shock protein-70 associated with progesterone receptors is not involved in receptor-DNA binding. Mol Endocrinol 5:1993–2004PubMedCrossRefGoogle Scholar
  307. Ozawa K, Kuwabara K, Tamatani M, Takatsuji K, Tsukamoto Y, Kaneda S, Yanagi H, Stern DM, Eguchi Y, Tsujimoto Y, Ogawa S, Tohyama M (1999) 150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. J Biol Chem 274:6397–6404PubMedCrossRefGoogle Scholar
  308. Palter SF, Mulayim N, Senturk L, Arici A (2001) Interleukin-8 in the humans Fallopian tube. J Clin Endocrinol Metab 86:2660–2667PubMedCrossRefGoogle Scholar
  309. Parrish JJ, Susko-Parrish J, Winter MA, First NL (1988) Capacitation of bovine sperm by heparin. Biol Reprod 38:1171–1180PubMedCrossRefGoogle Scholar
  310. Parrish JJ, Susko-Parrish J, Handrow RR, Sims MM, First NL (1989) Capacitation of bovine spermatozoa by oviduct fluid. Biol Reprod 40:131–140CrossRefGoogle Scholar
  311. Pearse DE, Janzen FJ, Avise JC (1999) Genetic analysis of sequential clutches in the painted turtle. Chrysemys picta: sperm storage and remating behavior of individual females. Am Zool 39:111aGoogle Scholar
  312. Pérez FA, Roma SM, Cabada MO, Marini PE (2006) Sperm binding glycoprotein is differentially present surrounding the lumen of isthmus and ampulla of the pig’s oviduct. Anat Embryol 211:619–624PubMedCrossRefGoogle Scholar
  313. Pérez-Martínez S, Franchi AM, Viggiano JM, Herrero MB, Gimeno M (1998) Effect of prostaglandin F (PGF) on oviductal nitric oxide synthase (NOS) activity: possible role of endogenous NO on PGF-induced contractions in rat oviduct. Prostaglandins Other Lipid Mediat 56:155–166PubMedCrossRefGoogle Scholar
  314. Pérez-Martínez S, Hermoso M, Farina M, Ribeiro ML, Rapanelli M, Espinosa M, Villalón M, Franchi AM (2006) 17-β-Estradiol upregulates COX-2 in the rat oviduct. Prostaglandins Other Lipid Mediat 80:155–164PubMedCrossRefGoogle Scholar
  315. Perrot-Applanat M, Lescop P, Milgrom E (1992) The cytoskeleton and the cellular traffic of the progesterone receptor. J Cell Biol 119:337–348PubMedCrossRefGoogle Scholar
  316. Petrunkina AM, Harrison RA, Töpfer-Petersen E (2000) Only low levels of spermadhesin AWN are detectable on the surface of live ejaculated boar spermatozoa. Reprod Fertil Dev 12:361–371PubMedCrossRefGoogle Scholar
  317. Petrunkina AM, Gehlhaar R, Drommer W, Waberski D, Töpfer-Petersen E (2001a) Selective sperm binding to porcine oviductal epithelium in vitro. Reproduction 121:889–896PubMedCrossRefGoogle Scholar
  318. Petrunkina AM, Friedrich J, Drommer W, Bicker G, Waberski D, Töpfer-Petersen E (2001b) Kinetic characterization of the changes in protein tyrosine phosphorylation of membranes, cytosolic Ca2+ concentration and viability in boar sperm populations selected by binding to oviductal epithelial cells. Reproduction 122:469–480PubMedCrossRefGoogle Scholar
  319. Petrunkina AM, Simon K, Günzel-Apel AR, Töpfer-Petersen E (2003) Regulation of capacitation of canine spermatozoa during co-culture with heterologous oviductal epithelial cells. Reprod Domest Anim 38:455–463PubMedCrossRefGoogle Scholar
  320. Petrunkina AM, Simon K, Günzel-Apel AR, Töpfer-Petersen E (2004) Kinetics of protein tyrosine phosphorylation in sperm selected by binding to homologous and heterologous oviductal explants: how specific is the regulation by the oviduct? Theriogenology 61:1617–1634PubMedCrossRefGoogle Scholar
  321. Petrunkina AM, Waberski D, Günzel-Apel AR, Töpfer-Petersen E (2007) Determinants of sperm quality and fertility in domestic animals. Reproduction 134:3–17PubMedCrossRefGoogle Scholar
  322. Picard D, Khursheed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR (1990) Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348:166–168PubMedCrossRefGoogle Scholar
  323. Plotton I, Sánchez P, Durand P, Lejeune H (2006) Decrease of both stem cell factor and clusterin mRNA levels in testicular biopsies of azoospermic patients with constitutive or idiopathic but not acquired spermatogenic failure. Hum Reprod 21:2340–2345PubMedCrossRefGoogle Scholar
  324. Plucienniczak G, Jagiello A, Plucienniczak A, Holody D, Strzezek J (1999) Cloning of complementary DNA encoding the pB1 component of the 54-kilodalton glycoprotein of boar seminal plasma. Mol Reprod Dev 52:303–309PubMedCrossRefGoogle Scholar
  325. Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ, Suarez SS (1991) Fertilizing capacity of bovine sperm may be maintained by the binding of oviductal epithelial cells. Biol Reprod 44:102–107PubMedCrossRefGoogle Scholar
  326. Potter H, Kramer CR (2000) Ultrastructural observations on sperm storage in the ovary of the platyfish, Xiphophorus maculatus (Teleostei: Poeciliidae): the role of the duct epithelium. J Morphol 245:110–129PubMedCrossRefGoogle Scholar
  327. Powers MV, Workman P (2006) Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocrinol Relat Cancer 13(Suppl 1):S125–S135CrossRefGoogle Scholar
  328. Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360PubMedCrossRefGoogle Scholar
  329. Quintero I, Ghersevich S, Caille A, Munuce MJ, Daniele SM, Morisoli L (2005) Effects of human oviductal in vitro secretion on spermatozoa and search of sperm-oviductal proteins interactions. Int J Androl 28:137–143PubMedCrossRefGoogle Scholar
  330. Rajagopal M, Tollner TL, Finkbeiner WE, Cherr GN, Widdicombe JH (2006) Differentiated structure and function of primary cultures of monkey oviductal epithelium. In Vitro Cell Dev Biol Anim 42:248–254PubMedCrossRefGoogle Scholar
  331. Rajapandi T, Greene LE, Eisenberg E (2000) The molecular chaperones Hsp90 and Hsc70 are both necessary and sufficient to activate hormone binding by glucocorticoid receptor. J Biol Chem 275:22597–22604PubMedCrossRefGoogle Scholar
  332. Reinert M, Calvete JJ, Sanz L, Mann K, Töpfer-Petersen E (1996) Primary structure of stallion seminal plasma protein HSP-7, a zonapellucida-binding protein of the spermadhesin family. Eur J Biochem 242:636–640PubMedCrossRefGoogle Scholar
  333. Reischl J, Prelle K, Schöl H, Neumüller C, Einspanier R, Sinowatz F, Wolf E (1999) Factors affecting proliferation and dedifferentiation of primary bovine oviduct epithelial cells in vitro. Cell Tiss Rese 296:371–383CrossRefGoogle Scholar
  334. Revah I, Gadella BM, Flesch FM, Colenbrander B, Suarez SS (2000) Physiological state of bull sperm affects fucose- and mannose-binding properties. Biol Reprod 62:1010–1015PubMedCrossRefGoogle Scholar
  335. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278:20915–20924PubMedCrossRefGoogle Scholar
  336. Reyes-Moreno C, Boilard M, Sullivan R, Sirard MA (2002) Characterization and identification of epididymal factors that protect ejaculated bovine sperm during in vitro storage. Biol Reprod 66:159–166PubMedCrossRefGoogle Scholar
  337. Reyes-Moreno C, Laflamme J, Frenette G, Sirard MA, Sullivan R (2008) Spermatozoa modulate epididymal cell proliferation and protein secretion in vitro. Mol Reprod Dev 75:512–520PubMedCrossRefGoogle Scholar
  338. Ricci G, Cacciola G, Altucci L, Meccariello R, Pierantoni R, Fasano S, Cobellis G (2007) Endocannabinoid control of sperm motility: the role of epididymus. Gen Comp Endocrinol 153:320–322PubMedCrossRefGoogle Scholar
  339. Richardson WD, Mills AD, Dilworth SM, Laskey RA, Dingwall C (1988) Nuclear protein migration involves two steps: rapid binding at the nuclear envelope followed by slower translocation through nuclear pores. Cell 52:655–664PubMedCrossRefGoogle Scholar
  340. Riley-Vargas RC, Lanzendorf S, Atkinson JP (2005) Targeted and restricted complement activation on acrosome-reacted spermatozoa. J Clin Invest 115:1241–1249PubMedGoogle Scholar
  341. Rodríguez-Dorta N, Cognié Y, González F, Poulin N, Guignot F, Touzé JL, Baril G, Cabrera F, Álamo D, Batista M, Gracia A, Mermillod P (2007) Effect of coculture with oviduct epithelial cells on viability after transfer of vitrified in vitro produced goat embryos. Theriogenology 68:908–913PubMedCrossRefGoogle Scholar
  342. Rodríguez-Martínez H (2007) Role of the oviduct in sperm capacitation. Theriogenology 68(Suppl 1):S138–S146PubMedCrossRefGoogle Scholar
  343. Rodríguez-Martínez H, Iborra A, Martínez P, Calvete JJ (1998) Immunoelectronmicroscopic imaging of spermadhesin AWN epitopes on boar spermatozoa bound in vivo to the zona pellucida. Reprod Fertil Dev 10:491–497PubMedCrossRefGoogle Scholar
  344. Rodríguez-Martínez H, Tienthai P, Suzuki K, Funahashi H, Ekwall H, Johannisson A (2001) Involvement of oviduct in sperm capacitation and oocyte development in pigs. Reproduction Suppl 58:129–145Google Scholar
  345. Rodríguez-Martínez H, Saravia F, Wallgren M, Tienthai P, Johannisson A, Vázquez JM, Martínez E, Roca J, Sanz L, Calvete JJ (2005) Boar spermatozoa in the oviduct. Theriogenology 63:514–535PubMedCrossRefGoogle Scholar
  346. Romar R, Coy P, Campos I, Gadea J, Matás C, Ruiz S (2001) Effect of co-culture of porcine sperm and oocytes with porcine epithelial cells on in vitro fertilization. Anim Reprod Sci 68:85–98PubMedCrossRefGoogle Scholar
  347. Romar R, Coy P, Ruiz S, Gadea J, Rath D (2003) Effects of oviductal and cumulus cells on vitro fertilization and embryo development of porcine oocytes fertilized with epididymal spermatozoa. Theriogenology 59:975–986PubMedCrossRefGoogle Scholar
  348. Romero A, Romão MJ, Varela PF, Kölln I, Dias JM, Carvalho AL, Sanz L, Töpfer-Petersen E, Calvete JJ (1997) The crystal structures of two spermadhesins reveal the CUB domain fold. Nat Struct Biol 4:783–788PubMedCrossRefGoogle Scholar
  349. Rossato M (2008) Endocannabinoids, sperm functions and energy metabolism. Mol Cell Endrocrinol 286(Suppl 1):S31–S35CrossRefGoogle Scholar
  350. Rossato M, Ion Popa F, Ferigo M, Clari G, Foresta C (2005) Human sperm express cannabinoid receptor Cb1, the activation of which inhibits motility, acrosome reaction, and mitochondrial function. J Clin Endocrinol Metab 90:984–991Google Scholar
  351. Rottmayer R, Ulbrich SE, Kölle S, Preller K, Neumueller C, Sinowatz F, Meyer HH, Wolf E, Hiendleder S (2006) A bovine oviduct epithelial cell suspension culture system suitable for studying embryo-maternal interactions: morphological and functional characterization. Reproduction 132:637–648PubMedCrossRefGoogle Scholar
  352. Rousseau JP, Ménézo Y (1993) Role of the female genital tract in the transport and survival of gametes and the fertilized egg. In: Thibault C, Levasseur MC, Hunter RH (eds) Reproduction in Mammals and Man. Ellipses, Paris, pp 369–386Google Scholar
  353. Saksena SK, Harper JK (1975) Relationship between concentration of prostaglandin F (PGF) in the oviduct and egg transport in rabbits. Biol Reprod 13:68–76PubMedCrossRefGoogle Scholar
  354. Sánchez-Luengo S, Aumüller G, Albrecht M, Sen PC, Röhm K, Wilhelm B (2004) Interaction of PDC-109, the major secretory protein from bull seminal vesicles, with bovine sperm membrane Ca2+-ATPase. J Androl 25:234–244PubMedGoogle Scholar
  355. Sanz L, Calvete JJ, Mann K, Schäfer W, Schmid ER, Töpfer-Petersen E (1991) The amino acid sequence of AQN-3, a carbohydrate binding protein isolated from boar sperm. Location of disulphide bridges. FEBS Lett 291:33–36PubMedCrossRefGoogle Scholar
  356. Sanz L, Calvete JJ, Jonáková V, Töpfer-Petersen E (1992a) Boar spermadhesins AQN-1 and AWN are sperm associated acrosin inhibitor acceptor proteins. FEBS Lett 300:63–66PubMedCrossRefGoogle Scholar
  357. Sanz L, Calvete JJ, Mann K, Schäfer W, Schmid ER, Amselgruber W, Sinowatz F, Ehrhard M, Töpfer-Petersen E (1992b) The complete primary structure of the spermadhesin AWN, a zona pellucida-binding protein isolated from boar spermatozoa. FEBS Lett 300:213–218PubMedCrossRefGoogle Scholar
  358. Sanz L, Calvete JJ, Mann K, Schafer W, Schmid ER, Töpfer-Petersen E (1992c) The complete primary structure of the boar spermadhesin AQN-1, a carbohydrate-binding protein involved in fertilization. Eur J Biochem 205:645–652PubMedCrossRefGoogle Scholar
  359. Sanz L, Calvete JJ, Schäfer W, Mann K, Töpfer-Petersen E (1992d) Isolation and biochemical characterization of two isoforms of a boar sperm zona pellucida-binding protein. Biochim Biophys Acta 1119:127–132PubMedCrossRefGoogle Scholar
  360. Sanz L, Calvete JJ, Mann K, Gabius HJ, Töpfer-Petersen E (1993) Isolation and biochemical of heparin-binding proteins from boar seminal plasma: a dual role for spermadhesins in fertilization. Mol Reprod Dev 35:37–43PubMedCrossRefGoogle Scholar
  361. Saridogan E, Djahanbakhch O, Kervancioglu ME, Kahyaoglu F, Shrimanker K, Grudzinskas JG (1997) Placental protein 14 production by human Fallopian tube epithelial cells in vitro. Hum Reprod 12:1500–1507PubMedCrossRefGoogle Scholar
  362. Satake N, Elliott RM, Watson PF, Holt WV (2006) Sperm selection and competition in pigs may be mediated by the differential motility activation and suppression of sperm subpopulations within the oviduct. J Exp Biol 209:1560–1572PubMedCrossRefGoogle Scholar
  363. Scherrer LC, Picard D, Massa E, Harmon JM, Simons SS Jr, Yamamoto KR, Pratt WB (1993) Evidence that the hormone binding domain of steroid receptors confers hormonal control on chimeric proteins by determining their hormone-regulated binding to heat-shock protein 90. Biochemistry 32:5381–5386PubMedCrossRefGoogle Scholar
  364. Schuel H, Burkman LJ (2005) A tale of two cells: endocannabinoid-signaling regulates functions of neurons and sperm. Biol Reprod 73:1078–1086PubMedGoogle Scholar
  365. Schuel H, Burkman LJ, Lippes J, Crickard K, Forester E, Piomelli D, Giuffrida A (2002a) N-acylethanolamines in human reproductive fluids. Chem Phys Lipids 121:211–227PubMedCrossRefGoogle Scholar
  366. Schuel H, Burkman LJ, Lippes J, Crickard K, Mahony MC, Giuffrida A, Picone RP, Makriyannis A (2002b) Evidence that anandamide-signaling regulates human sperm functions required for fertilization. Mol Reprod Dev 63:376–387PubMedCrossRefGoogle Scholar
  367. Seidah NG, Manjunath P, Rochemont J, Sairam MR, Chrétien M (1987) Complete amino acid sequence of BSP-A3 from bovine seminal plasma. Homology to PDC-109 and to the collagen-binding domain of fibronectin. Biochem J 243:195–203PubMedGoogle Scholar
  368. Sever DM (2002) Female sperm storage in amphibians. J Exp Zool 292:165–179PubMedCrossRefGoogle Scholar
  369. Sever DM, Brizzi R (1998) Comparative biology of sperm storage in female salamanders. J Exp Zool 282:460–476PubMedCrossRefGoogle Scholar
  370. Shah M, Stanek J, Handwerger S (1998) Differential localization of heat shock proteins 90, 70, 60 and 27 in human decidua and placenta during pregnancy. Histochem J 30:509–518PubMedCrossRefGoogle Scholar
  371. Shaner L, Morano KA (2007) All in the family: atypical Hsp70 chaperones are conserved modulators of Hsp70 activity. Cell Stress Chaperones 12:1–8PubMedCrossRefGoogle Scholar
  372. Shemetov AA, Seit-Nebi AS, Gusev NB (2008) Structure, properties, and functions of the human small heat-shock protein HSP22 (HspB8, H11, E2IG1): A critical review. J Neurosci Res 86:264–269PubMedCrossRefGoogle Scholar
  373. Shibuya N, Goldstein IJ, Van Damme EJ, Peumans WJ (1988) Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J Biol Chem 263:728–734PubMedGoogle Scholar
  374. Sidhu KS, Mate KE, Rodger JC (1998) Sperm-oviduct epithelial cell monolayer co-culture: an in vitro model of sperm-female tract interactions in a marsupial, the tammar wallaby (Macropus eugenii). J Reprod Fertil 114:55–61PubMedCrossRefGoogle Scholar
  375. Sidrauski C, Chapman R, Walter R (1998) The unfold protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol 8:245–249PubMedCrossRefGoogle Scholar
  376. Simmons DG, Kennedy TG (2000) Induction of glucose-regulated protein 78 in rat uterine glandular epithelium during uterine sensitization for the decidual cell reaction. Biol Reprod 62:1168–1176PubMedCrossRefGoogle Scholar
  377. Smith DF, Toft DO (1993) Steroid receptors and their associated proteins. Mol Endocrinol 7:4–11PubMedCrossRefGoogle Scholar
  378. Smith TT, Yanagimachi R (1990) The viability of hamster spermatozoa stored in the isthmus of the oviduct: the influence of sperm-epithelium contact for sperm survival. Biol Reprod 42:450–457PubMedCrossRefGoogle Scholar
  379. Smith TT, Yanagimachi R (1991) Attachment and release of spermatozoa from the caudal isthmus of the hamster oviduct. J Reprod Fertil 91:567–573PubMedCrossRefGoogle Scholar
  380. Smith TT, Nothnick WB (1997) Role of direct contact between spermatozoa and oviductal epithelial cells in maintaining rabbit sperm viability. Biol Reprod 56:83–89PubMedCrossRefGoogle Scholar
  381. Song CY, Gao B, Wu H, Wang XY, Chen GH, Mao J (2010) Spatial and temporal expression of spermadhesin genes in reproductive tracts of male and female pigs and ejaculated sperm. Theriogenology 73:551–559PubMedCrossRefGoogle Scholar
  382. Sostaric E, Georgiou AS, Wong CH, Watson PF, Holt WV, Fazeli A (2006) Global profiling of surface plasma membrane proteome of oviductal epithelial cells. J Proteom Res 5:3029–3037CrossRefGoogle Scholar
  383. Sõti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146:769–780PubMedCrossRefGoogle Scholar
  384. Spilman CH, Shaikh AA, Harper MJ (1978) Oviductal motility amplitude and ovarian steroid secretion during egg transport in the rabbit. Biol Reprod 18:409–417PubMedCrossRefGoogle Scholar
  385. Storrie MT, Walker TI, Laurenson LJ, Hamlett WC (2008) Microscopic organization of the sperm storage tubules in the oviducal gland of the female gummy shark (Mustelus antarcticus), with observations on sperm distribution and storage. J Morphol 269:1308–1324PubMedCrossRefGoogle Scholar
  386. Suarez SS (1987) Sperm transport and motility in the mouse oviduct: observations in situ. Biol Reprod 36:203–210PubMedCrossRefGoogle Scholar
  387. Suarez SS (1998) The oviductal sperm reservoir in mammals; mechanisms of formation. Biol Reprod 58:1105–1107PubMedCrossRefGoogle Scholar
  388. Suarez SS (2001) Carbohydrate-mediated formation of the oviductal sperm reservoir in mammals. Cells Tissues Organs 168:105–112PubMedCrossRefGoogle Scholar
  389. Suarez SS (2002) Formation of a reservoir of sperm in the oviduct. Reprod Domest Anim 37:140–143PubMedCrossRefGoogle Scholar
  390. Suarez SS (2007) Sperm interactions with the female tract: inspiration for assisted reproduction. Reprod Fertil Dev 19:104–110CrossRefGoogle Scholar
  391. Suarez SS, Pacey AA (2006) Sperm transport in the female reproductive tract. Hum Reprod Update 12:23–37PubMedCrossRefGoogle Scholar
  392. Suarez SS, Redfern K, Raynor P, Martin F, Phillips DM (1991) Attachment of boar sperm to mucosal explants of oviduct in vitro: possible role in formation of a sperm reservoir. Biol Reprod 44:998–1004Google Scholar
  393. Suarez SS, Revah I, Lo M, Kolle S (1998) Bull sperm binding to oviductal epithelium is mediated by a Ca2+-dependent lectin on sperm that recognizes Lewis-a trisaccharide. Biol Reprod 59:39–44PubMedCrossRefGoogle Scholar
  394. Subjeck JR, Shyy T, Shen I, Johnson RJ (1983) Association of the mammalian 110,000-dalton heat shock protein and nucleoli. J Cell Biol 97:1389–1395PubMedCrossRefGoogle Scholar
  395. Sun Y, MacRae TH (2005) Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci 62:2460–2476PubMedCrossRefGoogle Scholar
  396. Sun X, Wang H, Okabe M, Mackie K, Kingsley PJ, Marnett LJ, Cravatt BF, Dey SK (2009) Genetic loss of Faah compromises male fertility in mice. Biol Reprod 80:235–242PubMedCrossRefGoogle Scholar
  397. Sundaram M, Sivaprasadarao A, Aalten DM, Findlay JB (1998) Expression, characterization and engineered specificity of rat epididymal retinoic acid-binding protein. Biochem J 334(Pt 1):155–160PubMedGoogle Scholar
  398. Suzuki K, Asano A, Eriksson B, Niwa K, Nagai T, Rodríguez-Martínez H (2002) Capacitation status and in vitro fertility of boar spermatozoa: effects of seminal plasma, cumulus-oocyte-complexes-conditioned medium and hyaluronan. Int J Androl 25:84–93PubMedCrossRefGoogle Scholar
  399. Tabibzadeh S, Broome J (1999) Heat shock proteins in human endometrium throughout the menstrual cycle. Infect Dis Obstetr Gynecol 7:5–9Google Scholar
  400. Tabibzadeh S, Kong QF, Satyaswaroop PG, Babaknia A (1996) Heat shock proteins in human endometrium throughout the menstrual cycle. Hum Reprod 11:633–640PubMedCrossRefGoogle Scholar
  401. Talevi R, Gualtieri R (2001) Sulfated glycoconjugates are powerful modulators of bovine sperm adhesion and release from the oviductal epithelium in vitro. Biol Reprod 64:491–498PubMedCrossRefGoogle Scholar
  402. Talevi R, Gualtieri R (2004) In vivo versus in vitro fertilization. Eur J Obstet Gynecol Reprod Biol 115(Suppl 1):S68–S71PubMedCrossRefGoogle Scholar
  403. Talevi R, Gualtieri R (2010) Molecules involved in sperm-oviduct adhesion and release. Theriogenology 73:796–801PubMedCrossRefGoogle Scholar
  404. Talevi R, Zagami M, Castaldo M, Gualtieri R (2007) Redox regulation of sperm surface thiols modulates adhesion to the fallopian tube epithelium. Biol Reprod 76:728–735PubMedCrossRefGoogle Scholar
  405. Talevi R, Barbato V, De Iorio S, Mollo V, Capriglione T, Ricchiari L, Samo A, Gualtieri R (2010) Is there a role for endocannabinoids in sperm-oviduct interaction? Reproduction 140:247–257PubMedCrossRefGoogle Scholar
  406. Tan XW, Ma SF, Yu JN, Zhang X, Lan GC, Liu XY, Han ZB, Tan JH (2007) Effects of species and cellular activity of oviductal epithelial cells on their dialogue with co-cultured mouse embryos. Cell Tissue Res 327:55–66PubMedCrossRefGoogle Scholar
  407. Taylor AH, Ang C, Bell SC, Konje JC (2007) The role of the endocannabinoid system in gametogenesis, implantation and early pregnancy. Hum Reprod Update 13:501–513PubMedCrossRefGoogle Scholar
  408. Tedeschi G, Oungre E, Mortarino M, Negri A, Maffeo G, Ronchi S (2000) Purification and primary structure of a new bovine spermadhesin. Eur J Biochem 267:6175–6179PubMedCrossRefGoogle Scholar
  409. Teijeiro JM, Cabada MO, Marini PE (2008) Sperm binding glycoprotein (SBG) produces calcium and bicarbonate dependent alteration of acrosome morphology and protein tyrosine phosphorylation on boar sperm. J Cell Biochem 103:1413–1423PubMedCrossRefGoogle Scholar
  410. Teijeiro JM, Ignoz GG, Marini PE (2009) Annexin A2 is involved in pig (Sus scrofa) sperm-oviduct interaction. Mol Reprod Dev 76:334–341PubMedCrossRefGoogle Scholar
  411. Thomas PG, Ball BA, Brinsko SP (1994) Interaction of equine spermatozoa with oviduct epithelial cell explants is affected by estrous cycle and anatomic origin of explants. Biol Reprod 51:222–228PubMedCrossRefGoogle Scholar
  412. Thomas PG, Ignotz GG, Ball BA, Miller PG, Brinsko SP, Currie B (1995a) Isolation, culture, and characterization of equine oviduct epithelial cells in vitro. Mol Reprod Dev 41:468–478PubMedCrossRefGoogle Scholar
  413. Thomas PG, Ignotz GG, Ball BA, Brinsko SP, Curie WB (1995b) Effect of coculture with stallion spermatozoa on de novo protein synthesis and secretion by equine oviduct epithelial cells. Am J Vet Res 56:1657–1662PubMedGoogle Scholar
  414. Tichá M, Kraus M, Čechová D, Jonáková V (1998) Saccharide-binding properties of boar AQN spermadhesins and DQH sperm surface protein. Folia Biol (Prague) 44:15–21Google Scholar
  415. Tienthai P, Suzuki K, Pertoft H, Kjellén L, Rodríguez-Martínez H (2000a) Production of glycosaminoglycans by the porcine oviduct in relation to sperm storage. Reprod Domest Anim 35:167–170Google Scholar
  416. Tienthai P, Kjellén L, Pertoft H, Suzuki K, Rodríguez-Martínez H (2000b) Localization and quantification of hyaluronan and sulfated glycosaminoglycans in the tissue and intraluminal fluid of the pig oviduct. Reprod Fertil Dev 12:173–182PubMedCrossRefGoogle Scholar
  417. Tienthai P, Kjellén L, Pertoft H, Suzuki K, Rodríguez-Martínez H (2001) Localisation and quantitation of hyaluronan and sulphated glycosaminoglycans in the tissues and intraluminal fluid of the pig oviduct. Reprod Fertil Dev 12:173–182CrossRefGoogle Scholar
  418. Tienthai P, Kimura N, Heldin P, Sato E, Rodríguez-Martínez H (2003a) Expression of hyaluronan synthase-3 (has3) in the porcine oviductal epithelium during oestrus. Reprod Fertil Dev 15:99–105PubMedCrossRefGoogle Scholar
  419. Tienthai P, Yokoo M, Kimura N, Heldin P, Sato E, Rodríguez-Martínez H (2003b) Immunohistochemical localization and expression of the hyaluronan receptor CD44 in the porcine oviductal epithelium during oestrus. Reproduction 125:119–132PubMedCrossRefGoogle Scholar
  420. Tienthai P, Johannisson A, Rodríguez-Martínez H (2004) Sperm capacitation in the porcine oviduct. Anim Reprod Sci 80:131–146PubMedCrossRefGoogle Scholar
  421. Töpfer-Petersen E (1999) Carbohydrate-based interactions on the route of a spermatozoon to fertilization. Hum Reprod Update 5:314–329PubMedCrossRefGoogle Scholar
  422. Töpfer-Petersen E, Romero A, Varela PF, Ekhlasi-Hundrieser M, Dostalova Z, Sanz L, Calvete JJ (1998) Spermadhesins: a new protein family. Facts, hypotheses and perspectives. Andrologia 30:217–224PubMedCrossRefGoogle Scholar
  423. Töpfer-Petersen E, Wagner A, Friedrich J, Petrunkina AM, Ekhlasi-Hundrieser M, Waberski D, Drommer W (2002) Function of the mammalian oviductal sperm reservoir. J Exp Zool 292:210–215PubMedCrossRefGoogle Scholar
  424. Töpfer-Petersen E, Ekhlasi-Hundrieser M, Tsolova M (2008) Glycobiology of fertilization in the pig. Int J Dev Biol 52:717–736PubMedCrossRefGoogle Scholar
  425. Torchia J, Glass C, Rosenfeld MG (1998) Co-activators and co-repressors in the integration of transcriptional responses. Curr Opin Cell Biol 10:373–383PubMedCrossRefGoogle Scholar
  426. Tse PK, Lee YL, Chow WN, Luk JM, Lee KF, Yeung WS (2008) Preimplatation embryos co-operates with oviductal cells to produce embryotrophic IC3B. Endocrinology 149:1268–1276PubMedCrossRefGoogle Scholar
  427. Tyagi RK, Amazit L, Lescop P, Milgrom E, Guiochon-Mantel A (1998) Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate. Mol Endocrinol 12:1684–1695PubMedCrossRefGoogle Scholar
  428. Vannucchi CI, de Oliveira CM, Marques MG, Assumpçao ME, Visintin JA (2006) In vitro canine oocyte nuclear maturation in homologous oviductal cell co-culture with hormone-supplemented media. Theriogenology 66:1677–1681PubMedCrossRefGoogle Scholar
  429. Varela PF, Romero A, Sanz L, Romão MJ, Töpfer-Petersen E, Calvete JJ (1997) The 2.4 Å resolution crystal structure of boar seminal plasma PSP-I/PSP-II: a zona pellucida-binding glycoprotein heterodimer of the spermadhesin family built by a CUB domain architecture. J Mol Biol 274:635–649PubMedCrossRefGoogle Scholar
  430. Vatzias G, Hagen DR (1999) Effects of porcine follicular fluid and oviduct-conditioned media on maturation and fertilization of porcine oocytes in vitro. Biol Reprod 60:42–48PubMedCrossRefGoogle Scholar
  431. Verdi JM, Campagnoni AT (1990) Translational regulation by steroids. Identification of a steroid modulatory element in the 5′-untranslated region of the myelin basic protein messenger RNA. J Biol Chem 265:20314–20320PubMedGoogle Scholar
  432. Veselský L, Peknicová J, Cechová D, Kraus M, Geussová G, Jonáková V (1999) Characterization of boar spermadhesins by monoclonal and polyclonal antibodies and their role in binding to oocytes. Am J Reprod Immunol 42:187–197PubMedCrossRefGoogle Scholar
  433. Vila S, Sábat M, Hernández MR, Muñoz M (2007) Intraovarian sperm storage in Helicolenus dactylopterus dactylopterus: fertilization, crypt formation and maintenance of stored sperm. Raffles B Zool 14(Suppl):21–27Google Scholar
  434. Vlad M, Walker D, Kennedy RC (1996) Nuclei number in human embryos co-cultured with human ampullary cells. Hum Reprod 11:1678–1686PubMedCrossRefGoogle Scholar
  435. Voellmy R, Boellmann F (2007) Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 594:89–99PubMedCrossRefGoogle Scholar
  436. Waberski D, Magnus F, Ardón F, Petrunkina AM, Weitze KF, Töpfer-Petersen E (2006) Binding of boar spermatozoa to oviductal epithelium in vitro in relation to sperm morphology and storage time. Reproduction 131:311–318PubMedCrossRefGoogle Scholar
  437. Wagh PV, Lippes J (1989) Human oviductal fluid proteins. III. Identification and partial purification. Fertil Steril 51:81–88PubMedGoogle Scholar
  438. Wagner A, Ekhlasi-Hundrieser M, Hettel C, Petrunkina A, Waberski D, Nimtz M, Töpfer-Petersen E (2002) Carbohydrate-based interactions of oviductal sperm reservoir formation-studies in the pig. Mol Reprod Dev 61:249–257PubMedCrossRefGoogle Scholar
  439. Wah DA, Fernandez-Tornero CG, Sanz L, Romereo A, Calvete JJ (2002) Sperm coating mechanism from 1.8 A crystal structure of PDC-109-phosphorylcholine complex. Structure 10:505–514PubMedCrossRefGoogle Scholar
  440. Walter I, Miller I (1996) S-100 protein subunits in bovine oviduct epithelium: in situ distribution and changes during primary cell culture. Histochem J 28:671–680PubMedCrossRefGoogle Scholar
  441. Walter I, Bavdek S (1997) Lectin binding pattern of porcine mucosa and endometrium during oestrous cycle. J Anat 190:299–307PubMedCrossRefGoogle Scholar
  442. Walther A, Riehemann K, Gerke V (2000) A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol Cell 5:831–840PubMedCrossRefGoogle Scholar
  443. Wang H, Guo Y, Wang D, Kingsley PJ, Marnett LJ, Das SK, DuBois RN, Dey SK (2004) Aberrant cannabinoid signaling impairs oviductal transport of embryos. Nat Med 10:1074–1080PubMedCrossRefGoogle Scholar
  444. Wang H, Xie H, Guo Y, Zhang H, Takahashi T, Kingsley PJ, Marnett LJ, Das SK, Cravatt BF, Dey SK (2006) Fatty acid amide hydrolase deficiency limits early pregnancy events. J Clin Invest 116:2122–2131PubMedCrossRefGoogle Scholar
  445. Wang Z, Widgren EE, Richardson RT, O’Rand MG (2007) Characterization of an eppin protein complex from human semen and spermatozoa. Biol Reprod 77:476–484PubMedCrossRefGoogle Scholar
  446. Wassarman P, Jovine L, Litscher ES (2001) A profile of fertilization in mammals. Nat Cell Biol 3:59–64CrossRefGoogle Scholar
  447. Watson PF (1981) The roles of lipid and protein in the protection of ram spermatozoa at 5 degrees C by egg-yolk lipoprotein. J Reprod Fertil 62:483–492PubMedCrossRefGoogle Scholar
  448. Weigel NL (1996) Steroid hormone receptors and their regulation by phosphorylation. Biochem J 319:657–667PubMedGoogle Scholar
  449. Weis K (1998) Importins and exportins: how to get in and out of the nucleus. Trends Biochem Sci 23:185–189PubMedCrossRefGoogle Scholar
  450. Wempe F, Einspanier R, Scheit KH (1992) Characterization by cDNA cloning of the mRNA of a new growth factor from bovine seminal plasma: acidic seminal fluid protein. Biochem Biophys Res Commun 183:232–237PubMedCrossRefGoogle Scholar
  451. White KL, Hehnke K, Rickords LF, Southern LL, Thompson DL Jr, Wood TC (1989) Early embryonic development in vitro by coculture with oviductal epithelial cells in pigs. Biol Reprod 41:425–430PubMedCrossRefGoogle Scholar
  452. White R, Sjöberg M, Kalkhoven E, Parker MG (1997) Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine. EMBO J 16:1427–1435PubMedCrossRefGoogle Scholar
  453. Wilmut I, Hunter RHF (1984) Sperm transport into the oviducts of heifers mated early in oestrus. Reprod Nutr Dev 24:461–468Google Scholar
  454. Wollenhaupt K, Brüssow KP (1995) Isolierung eines 97 KDa Proteins aus dem Eileitersekret des Schweines mittels eines ‘High-performance Electrophoresis-chromatography (HPEC)’ Systems. Reprod Domest Anim 30:1–7Google Scholar
  455. Wollenhaupt K, Alm H, Tomek W, Brüssow KP (1997) Untersuchung des Einflusses eines zyklusspezifischen 97 KDa Proteins aus dem Eileitersekret des Schweines auf die de novo Proteinsyntheseleistung von präimplantativen Embryonen. Reprod Domest Anim 32:213–219CrossRefGoogle Scholar
  456. Wu WX, Derks JB, Zhang Q, Nathanielsz PW (1996) Changes in heat shock protein-90 and -70 messenger ribonucleic acid in uterine tissues of the ewe in relation to parturition and regulation by estradiol and progesterone. Endocrinology 137:5685–5693PubMedCrossRefGoogle Scholar
  457. Wurtz JM, Bourguet W, Renaud JP, Vivat V, Chambon P, Moras D, Gronemeyer H (1996) A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol 3:87–94, 206Google Scholar
  458. Xia P, Han VK, Viuff D, Armstrong DT, Watson AJ (1996) Expression of insulin-like growth factors in two bovine oviductal cultures employed for embryo co-culture. J Endocrinol 149:41–53PubMedCrossRefGoogle Scholar
  459. Xu KP, Yadav BR, Rorie RW, Plante L, Betteridge KJ, King WA (1992) Development and viability of bovine embryos derived from oocytes matured and fertilized in vitro and co-cultured with bovine oviducal epithelial cells. J Reprod Fertil 94:33–43PubMedCrossRefGoogle Scholar
  460. Yanagimachi R (1994a) Fertility of mammalian spermatozoa: its development and relativity. Zygote 2:371–372PubMedGoogle Scholar
  461. Yanagimachi R (1994b) Mammalian fertilization. In: Knobil E, Neill JD (eds) The physiology of reproduction, 2nd edn. Raven Press, New YorkGoogle Scholar
  462. Yang J, DeFranco DB (1994) Differential roles of heat shock protein 70 in the in vitro nuclear import of glucocorticoid receptor and simian virus 40 large tumor antigen. Mol Cell Biol 14:5088–5098PubMedGoogle Scholar
  463. Yang J, DeFranco DB (1996) Assessment of glucocorticoid receptor-heat shock protein 90 interactions in vivo during nucleocytoplasmic trafficking. Mol Endocrinol 10:3–13PubMedCrossRefGoogle Scholar
  464. Yang WC, Kwok SCM, Leshin S, Bollo E, Li WI (1998) Purified porcine seminal plasma protein enhances in vitro immune activities of porcine peripheral lymphocytes. Biol Reprod 59:202–207PubMedCrossRefGoogle Scholar
  465. Yáñiz JL, López-Gatius F, Hunter RH (2006) Scanning electron microscopy of the functional anatomy of the porcine oviductal mucosa. Anat Histol Embryol 35:28–34PubMedCrossRefGoogle Scholar
  466. Yao YQ, Ho PC, Yeung WS (1999) Effects of human oviductal cell culture on various functional parameters of human spermatozoa. Fertil Steril 71:232–239PubMedCrossRefGoogle Scholar
  467. Yao YQ, Ho PC, Yeung WS (2000) Human oviductal cells produce a factor(s) that maintains the motility of human spermatozoa in vitro. Fertil Steril 73:479–486PubMedCrossRefGoogle Scholar
  468. Yeste M (2008) New insights into boar sperm function and survival from integrated laboratory and field studies. PhD Thesis. University of Girona, GironaGoogle Scholar
  469. Yeste M, Lloyd RE, Briz M, Badia E, Bonet S, Holt WV (2007) Boar sperm quality after co-culture with homologous oviductal epithelial cells. Theriogenology 70:1395CrossRefGoogle Scholar
  470. Yeste M, Lloyd RE, Briz M, Bonet S, Holt WV (2008) The changes in the expression of three heat shock proteins during in vitro homologous oviductal epithelial cell-coculture. Reprod Domest Anim 43:53Google Scholar
  471. Yeste M, Lloyd RE, Briz M, Badia E, Bonet S, Holt WV (2009a) Direct contact between boar spermatozoa and porcine oviductal epithelial cell (OEC) cultures is needed for optimal sperm survival in vitro. Anim Reprod Sci 113:263–278PubMedCrossRefGoogle Scholar
  472. Yeste M, Holt WV, Briz M, Bonet S, Lloyd RE (2009b) Boar spermatozoa do not induce changes in heat shock protein gene expression without direct contact with oviductal epithelial cells. Reprod Domest Anim 44:132CrossRefGoogle Scholar
  473. Yeste M, Castillo-Martín M, Bonet S, Briz M (2012) Direct binding of boar ejaculate and epididymal spermatozoa to porcine epididymal epithelial cells is also needed to maintain sperm survival in in vitro co-culture. Anim Reprod Sci 131:181–193PubMedCrossRefGoogle Scholar
  474. Yeung WS, Ng VK, Lau EY, Ho PC (1994) Human oviductal cells and their conditioned medium maintain the motility and hyperactivation of human spermatozoa in vitro. Hum Reprod 9:656–660PubMedGoogle Scholar
  475. Ylikomi T, Bocquel MT, Berry M, Gronemeyer H, Chambon P (1992) Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J 11:3681–3694PubMedGoogle Scholar
  476. Ylikomi T, Wurtz JM, Syvälä H, Passinen S, Pekki A, Haverinen M, Bläuer M, Tuohimaa P, Gronemeyer H (1998) Reappraisal of the role of heat shock proteins as regulators of steroid receptor activity. Crit Rev Biochem Mol Biol 33:437–466PubMedCrossRefGoogle Scholar
  477. Yokoo M, Miyahayashi Y, Naganuma T, Kimura N, Sasada H, Sato E (2002) Identification of hyaluronic acid-binding proteins and their expressions in porcine cumulus-oocyte complexes during in vitro maturation. Biol Reprod 67:1165–1171PubMedCrossRefGoogle Scholar
  478. Yokoo M, Shimizu T, Kimura N, Tunjung WA, Matsumoto H, Abe H, Sasada H, Rodríguez-Martínez H, Sato E (2007) Role of the Hyaluronan receptor DC44 during porcine oocyte maturation. J Reprod Dev 53:263–270PubMedCrossRefGoogle Scholar
  479. Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labelling and mass spectrometry. Nat Biotechnol 21:660–666PubMedCrossRefGoogle Scholar
  480. Zhang M, Hong H, Zhou B, Jin S, Wang C, Fu M, Wang S, Xia G (2006) The expression of atrial natriuretic peptide in the oviduct and its functions in pig spermatozoa. J Endocrinol 189:493–507PubMedCrossRefGoogle Scholar
  481. Zhou CX, Wang XF, Chan HC (2005) Bicarbonate secretion by the female reproductive tract and its impact on sperm fertilizing capacity. Sheng Li Xue Bao 57:115–124PubMedGoogle Scholar
  482. Zhu WJ, Zhong Y, Zhang CX (2001) Effect of human oviductal epithelial cell cultural medium on cryopreserved human sperm survival. Cell Biol Int 25:1025–1027PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary MedicineAutonomous University of BarcelonaBellaterra (Cerdanyola del Vallès, Barcelona)Spain

Personalised recommendations