Biological Aspects of the Mature Boar Spermatozoon

  • Joan E. Rodríguez-GilEmail author


A practical consequence of the particular reproductive cycle of sows is that the functional features that distinguish boar spermatozoa cannot be extrapolated to other species, thus preventing an overall picture that explains mammalian sperm function from being assumed. Furthermore, the extraordinary complexity of the molecular mechanisms implied in the control and modulation of mature boar sperm functions makes it impossible to provide a complete description of these mechanisms in the limited space of this chapter. Taking this into account, this chapter centers on the description of three highly important specific aspects of boar sperm function. The first aspect is the mechanisms by which boar sperm cells manage their energy levels. The second aspect is the functional role of mitochondria as controllers of boar sperm function. The third aspect will address the existence of functional, separate subpopulations in boar ejaculates, and the hypothetical biological role of these subpopulations.


Mitochondrial Respiration Seminal Plasma Acrosome Reaction Female Genital Tract Hexokinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abaigar T, Holt WV, Harrison R, Del Barrio G (1999) Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer assisted motility assessments. Biol Reprod 60:32–41PubMedCrossRefGoogle Scholar
  2. Albarracín JL, Fernández-Novell JM, Ballester J, Rauch MC, Quintero-Moreno A, Peña A, Mogas T, Rigau T, Yañez A, Guinovart JJ, Slebe JC, Concha II, Rodríguez-Gil JE (2004) Gluconeogenesis-linked glycogen metabolism is important in the achievement of in vitro capacitation of dog spermatozoa in a medium without glucose. Biol Reprod 71:1437–1445PubMedCrossRefGoogle Scholar
  3. Aparicio IM, Bragado MJ, Gil MC, Garcia-Herreros M, Gonzalez-Fernandez L, Tapia JA, Garcia-Marin LJ (2007) Porcine sperm motility is regulated by serine phosphorylation of the glycogen synthase kinase-3alpha. Reproduction 134:435–444PubMedCrossRefGoogle Scholar
  4. Baker MA, Aitken RJ (2004) The importance of redox regulated pathways in sperm cell biology. Mol Cell Endocrinol 216:47–54PubMedCrossRefGoogle Scholar
  5. Balis UJ, Behnia K, Dwarakanath B, Bhatia SN (1999) Oxygen consumption characteristics of porcine hepatocytes. Metab Eng 1:49–62PubMedCrossRefGoogle Scholar
  6. Ballester J, Fernández-Novell JM, Rutllant J, García-Rocha M, Palomo MJ, Mogas T, Peña A, Rigau T, Guinovart JJ, Rodríguez-Gil JE (2000) Evidence for a functional glycogen metabolism in mature mammalian spermatozoa. Mol Reprod Develop 56:207–219CrossRefGoogle Scholar
  7. Baronos S (1971) Seminal carbohydrate in boar and stallion. J Reprod Fertil 24:303–305PubMedCrossRefGoogle Scholar
  8. Bonet S, Briz M, Pinart E, Sancho S, García-Gil N, Badia E (2000). Morphology of boar spermatozoa. In: Bonet S, Durfort M, Egozcu J (eds) Barcelona (Spain) Institut d’Estudis Catalans, p 197Google Scholar
  9. Bucci D, Isani G, Spinaci M, Tamanini C, Mari G, Zambelli D, Galeati G (2010) Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa. Reprod Domest Anim 45:315–322PubMedCrossRefGoogle Scholar
  10. Chappell JB, Greville GD (1961) Effects of oligomycin on respiration and swelling of isolated liver mitochondria. Nature 190:502–504PubMedCrossRefGoogle Scholar
  11. Dorado J, Gálvez MJ, Murabito MR, Muñoz-Serrano A, Hidalgo M (2011) Identification of sperm subpopulations in canine ejaculates: Effects of cold storage and egg yolk concentration. Anim Reprod Sci 127:106–113PubMedCrossRefGoogle Scholar
  12. Fernández-Novell JM, Ballester J, Medrano A, Otaegui PJ, Rigau T, Guinovart JJ, Rodríguez-Gil JE (2004) The presence of a high-Km hexokinase activity in dog, but not in boar, sperm. FEBS Lett 570:211–216PubMedCrossRefGoogle Scholar
  13. Fernández-Novell JM, Ballester J, Altirriba J, Ramió-Lluch L, Barberà A, Gomis R, Guinovart JJ, Rodríguez-Gil JE (2011) Glucose and fructose as functional modulators of overall dog, but not boar sperm function. Reprod Fertil Develop 23:468–480CrossRefGoogle Scholar
  14. Flores E, Fernández-Novell JM, Peña A, Rodríguez-Gil JE (2009) The degree of resistance to freezing-thawing is related to specific changes in the motile sperm subpopulations structure and mitochondrial activity in boar spermatozoa. Theriogenology 72:784–797PubMedCrossRefGoogle Scholar
  15. Folgero T, Bertheussen K, Lindal S, Torbergsen T, Oian P (1993) Mitochondrial disease and reduced sperm motility. Human Reprod 8:1863–1868Google Scholar
  16. Ford WC, Harrison A (1985) The presence of glucose increases the lethal effect of alpha-chlorohydrin on ram and boar spermatozoa in vitro. J Reprod Fertil 73:197–206PubMedCrossRefGoogle Scholar
  17. Halangk W, Bohneback R, Kunz W (1985) Interdependence of mitochondrial ATP production and ATP utilization in intact spermatozoa. Biochim Biophys Acta 808:316–322PubMedCrossRefGoogle Scholar
  18. Hammersted RH, Lardy HA (1983) The effects of substrate cycling on the ATP yield of sperm glycolysis. J Biol Chem 258:8759–8768Google Scholar
  19. Harayama H, Nakamura K (2008) Changes of PKA and PDK1 in the principal piece of boar spermatozoa treated with a cell-permeable cAMP analog to induce flagellar hyperactivation. Mol Reprod Dev 75:1396–1407PubMedCrossRefGoogle Scholar
  20. Holt WV (1996) Can we predict fertility rates? Making sense of sperm motility. Reprod Domest Anim 31:17–24CrossRefGoogle Scholar
  21. Jones AR, Chantrill LA, Cokinakis A (1992) Metabolism of glycerol by mature boar spermatozoa. J Reprod Fertil 94:129–134PubMedCrossRefGoogle Scholar
  22. Jones AR (1997) Metabolism of lactate by mature boar spermatozoa. Reprod Fertil Develop 9:227–232CrossRefGoogle Scholar
  23. Jones AR, Connor DE (2000) Fructose metabolism by mature boar spermatozoa. J Reprod Fertil 94:129–134CrossRefGoogle Scholar
  24. Kaneto M, Krisfalusi M, Eddy EM, O’Brien DA, Miki K (2008) Bicarbonate-induced phosphorylation of p270 protein in mouse sperm by cAMP-dependent protein kinase. Mol Reprod Dev 75:1045–1053PubMedCrossRefGoogle Scholar
  25. Mann T (1975) Biochemistry of semen. In: Greep RO, Astwood EB (eds) Handbook of physiology. American Physiology Society, Washington, pp 321–347Google Scholar
  26. Marín S, Chiang K, Bassilian S, Lee W-NP, Boros LG, Fernández-Novell JM, Centelles JJ, Medrano A, Rodríguez- Gil JE, Cascante M (2003) Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization. FEBS Lett 554:342–346PubMedCrossRefGoogle Scholar
  27. Martinez-Pastor F, Garcia-Macias V, Alvarez M, Herraez P, Anel L, de Paz P (2005) Sperm subpopulations in Iberian red deer epididymal sperm and their changes through the cryopreservation process. Biol Reprod 72:316–327PubMedCrossRefGoogle Scholar
  28. Medrano A, García-Gil N, Ramió L, Rivera MM, Fernández-Novell JM, Ramírez A, Peña A, Briz MD, Pinart E, Concha II, Bonet S, Rigau T, Rodríguez-Gil JE (2006a) Hexose specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in the control of monosaccharide utilization in freshly diluted boar spermatozoa. Mol Reprod Dev 73:1179–1199PubMedCrossRefGoogle Scholar
  29. Medrano A, Fernández-Novell JM, Ramió L, Alvarez J, Goldberg E, Rivera M, Guinovart JJ, Rigau T, Rodríguez-Gil JE (2006b) Utilization of citrate and lactate through a lactate dehydrogenase and ATP-regulated pathway in boar spermatozoa. Mol Reprod Develop 73:369–378CrossRefGoogle Scholar
  30. Miró J, Lobo V, Quintero-Moreno A, Medrano A, Peña A, Rigau T (2005) Sperm motility patterns and metabolism in catalonian donkey semen. Theriogenology 63:1706–1716PubMedCrossRefGoogle Scholar
  31. Mueckler M (1990) Facilitative glucose transporters. Eur J Biochem 219:713–725CrossRefGoogle Scholar
  32. Muiño R, Tamargo C, Hidalgo CO, Peña AI (2008) Identification of sperm subpopulations with defined motility characteristics in ejaculates from Holstein bulls: Effects of cryopreservation and between-bull variation. Anim Reprod Sci 109:27–39PubMedCrossRefGoogle Scholar
  33. Nevo AC, Polge C, Frederick G (1970) Aerobic and anaerobic metabolism of boar spermatozoa in relation to their motility. J Reprod Fertil 22:109–118PubMedCrossRefGoogle Scholar
  34. Quintero-Moreno A, Miró J, Rigau T, Rodríguez-Gil JE (2003) Identification of sperm subpopulations with specific motility characteristics in stallion ejaculates. Theriogenology 58:1973–1990CrossRefGoogle Scholar
  35. Quintero-Moreno A, Rigau T, Rodríguez-Gil JE (2004) Regression analyses and motile sperm subpopulation study as improving tools in boar semen quality analysis. Theriogenology 61:673–690PubMedCrossRefGoogle Scholar
  36. Quintero-Moreno A, Rigau T, Rodríguez-Gil JE (2007) Multivariate cluster analysis regression procedures as tools to identify motile sperm subpopulations in rabbit semen and to predict semen fertility and litter size. Reprod Domest Anim 42:312–319PubMedCrossRefGoogle Scholar
  37. Ramió L, Rivera MM, Ramírez A, Concha II, Peña A, Rigau T, Rodríguez-Gil JE (2008) Dynamics of motile sperm subpopulations structure in boar ejaculates subjected to “in vitro” capacitation and further “in vitro” acrosome reaction. Theriogenology 69:501–512PubMedCrossRefGoogle Scholar
  38. Ramió-Lluch L, Fernández-Novell JM, Peña A, Colás C, Cebrián-Pérez JA, Muiño-Blanco T, Ramírez A, Concha II, Rigau T, Rodríguez-Gil JE (2011) “In vitro” capacitation and acrosome reaction are concomitant with specific changes in mitochondrial activity in boar sperm: evidence for a nucleated mitochondrial activation and for the existence of a capacitation-sensitive subpopulational structure. Reprod Domest Anim 46:664–673PubMedCrossRefGoogle Scholar
  39. Rigau T, Rivera M, Palomo MJ, Fernández-Novell JM, Mogas T, Ballester J, Peña A, Otaegui PJ, Guinovart JJ, Rodríguez-Gil JE (2002) Differential effects of glucose and fructose on hexose metabolism in dog spermatozoa. Reproduction 123:579–591PubMedCrossRefGoogle Scholar
  40. Rodríguez-Gil JE, Silvers G, Flores E, Palomo MJ, Ramírez A, Rivera MM, Castro M, Brito M, Bücher D, Correa J, Concha II (2007) Expression of GM-CSF receptor in ovine spermatozoa: GM-CSF effect on sperm viability and motility of sperm subpopulations after freezing-thawing process. Theriogenology 67:1359–1370PubMedCrossRefGoogle Scholar
  41. Rubio-Guillén J, González D, Garde JJ, Esteso MC, Fernández-Santos MR, Rodríguez-Gil JE, Madrid-Bury N, Quintero-Moreno A (2007) Effects of cryopreservation on bull spermatozoa distribution in morphometrically distinct subpopulations. Reprod Domest Anim 42:354–357PubMedCrossRefGoogle Scholar
  42. Ruíz-Pesini E, Díez C, Lapena AC, Pérez-Martos A, Montoya J, Alvarez E, Arenas J, López-Pérez M (1998) Correlation of sperm motility with mitochondrial enzymatic activities. Clin Chem 44:1616–1620PubMedGoogle Scholar
  43. Sancho S, Casas I, Ekwall H, Saravia F, Rodriguez-Martinez H, Rodriguez-Gil JE, Flores E, Pinart E, Briz M, Garcia-Gil N, Bassols J, Pruneda A, Bussalleu E, Yeste M, Bonet S (2007) Effects of cryopreservation on semen quality and the expression of sperm membrane hexose transporters in the spermatozoa of Iberian Pigs. Reproduction 134:111–121PubMedCrossRefGoogle Scholar
  44. Satake N, Elliott RMA, Watson PF, Holt WV (2006) Sperm selection and competition in pigs may be mediated by the differential motility activation and suppression of sperm subpopulations within the oviduct. J Exp Biol 209:1560–1572PubMedCrossRefGoogle Scholar
  45. Thurston LM, Watson PF, Mileham AJ, Holt WV (2001) Morphologically distinct sperm subpopulations defined by fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. J Androl 22:382–394PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Animal Medicine and SurgeryAutonomous University of BarcelonaCerdanyola del VallèsSpain

Personalised recommendations