Skip to main content

Quality Improvement of Boar Seminal Doses

  • Chapter
  • First Online:

Abstract

The implementation of artificial insemination techniques (AI) has been a turning point in the swine industry. To prepare doses for AI, semen must be collected by following a serial procedure involving high hygiene measures handling in order to minimise microbiological risk. One of these practices is the inclusion of antibiotics in the extenders, the aqueous media used for packing seminal doses that contain elements for assuring the survival of sperm cells for a short or long time period. However, a certain degree of microbial contamination cannot always be prevented, and in this case sperm quality and sanity standards of AI are better preserved if, prior to selling or freezing the doses, microbes are removed by applying methodologies, such as sperm filtration and sperm washing. Additionally, the demand for doses with a high ratio of X- or Y-bearing sperm is increasing due to the particular structure of commercial pig production; hence, it is also necessary to optimise current sex-deviation techniques. All these topics will be fully discussed in the present chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adiga S, Kumar P (2001) Influence of swim-up method on the recovery of spermatozoa from different types of semen samples. J Assist Reprod Genet 18:160–164

    Article  PubMed  CAS  Google Scholar 

  • Afshar A, Eaglesome MD (1990) Viruses associated with bovine semen. Vet Bull 60:93–109

    Google Scholar 

  • Agarwal A, Ranganathan P (2001) Higher rates of recovery with puresperm density gradients compared to isolate. Hum Reprod 16:P-053

    Google Scholar 

  • Ahmad Z, Anzar M, Shahab M, Ahmad N, Andrabi SM (2003) Sephadex and Sephadex ion-exchange filtration improves the quality and freezability of low-grade buffalo semen ejaculates. Theriogenology 59:1189–1202

    Google Scholar 

  • Aitken RJ, Curry BJ (2011) Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal 14:367–381 (Review)

    Google Scholar 

  • Althouse G (2007) Artificial insemination in swine: boar stud management. In: Current therapy in larg animal theriogenology, 2nd edn, pp 731–738

    Google Scholar 

  • Althouse GC (2008) Sanitary procedures for the production of extended semen. Reprod Dom Anim 43(Supp. 2):374–378

    Article  Google Scholar 

  • Althouse GC, Lu KG (2005) Bacteriospermia in extended porcine semen. Theriogenology 63:573–584

    Article  PubMed  Google Scholar 

  • Althouse GC, Kuster CE, Clark SG, Weisiger RM (2000) Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology 53:1167–1176

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JG, Storey BT (1982) Spontaneous lipid peroxidation in rabbit epididymal spermatozoa: its effect on sperm motility. Biol Reprod 27:1102–1108 Anim Reprod Sci 127(3–4):176–182

    Article  PubMed  CAS  Google Scholar 

  • Am-in N, Kirkwood RN, Techakumphu M, Tantasuparuk W (2011) Lipid profiles of sperm and seminal plasma from boars having normal or low sperm motility. Theriogenology 75:897–903

    Article  PubMed  CAS  Google Scholar 

  • Anzar M, Graham EF, Iqbal N (1997) Post-thaw plasma membrane integrity of bull spermatozoa separated with a Sephadex ion-exchange column. Theriogenology 47(4):845–856

    Article  PubMed  CAS  Google Scholar 

  • Auroux MR, Jacques L, Mathieu D, Auer J (1991) Is the sperm bacterial ratio a determining factor in impairment of sperm motility: an in vitro study in man with Escherichia coli. Intl J Androl 14:264–270

    Article  CAS  Google Scholar 

  • Basurto-Kuba VM, Evans LE (1981) Comparison of sperm-rich fractions of boar semen collected by electroejaculation and the gloved-hand technique. J Am Vet Med Assoc 178(9):985–986

    PubMed  CAS  Google Scholar 

  • Bathgate R (2008) Functional integrity of sex-sorted, frozen-thawed boar sperm and its potential for artificial insemination. Theriogenology 70:1234–1241

    Article  PubMed  CAS  Google Scholar 

  • Björndahl M, Mohammadieh M, Pourian M, Söderlund I, Kvist U (2005) Contamination by semial plasma andrology lab corner factors during sperm selection. J Androl 26(2):170–173

    PubMed  Google Scholar 

  • Bolarín AG (2011) Bacteriología en semen de porcino. Av Tecnol Porc VIII 5:20–30

    Google Scholar 

  • Bujan L, Daudin M, Righi L,Thauvin L, Mieusset R, Puel J, Izopet J, Pasquier C (2001) Effectiveness of “sperm washing” to recover spermatozoa without HIV and HCV genomes detection in HIV infected men. J Androl (Suppl):Abst P1/2-142

    Google Scholar 

  • Bujan L, Daudin M, Alvarez M, Massip P, Puel J, Pasquier C (2002) Intermittent human immunodeficiency type 1 virus (HIV-1) shedding in semen and efficiency of sperm processing despite high seminal HIV-1 RNA levels. Fertil Steril 78:1321–1323

    Article  PubMed  Google Scholar 

  • Bussalleu E, Pinart E, Yeste M, Briz M, Sancho S, Garcia-Gil N, Badia E, Bassols J, Pruneda A, Casas I, Bonet S (2005) Development of a protocol for multiple staining with fluorochromes to assess the functional status of boar spermatozoa. Micros Res Tech 68(5):277–283

    Article  Google Scholar 

  • Bussalleu E, Pinart E, Briz M, Sancho S, García-Gil N, Bassols J, Pruneda A, Yeste M, Casas I, Bonet S (2006) Filtración de dosis seminales en distintas matrices. In: Porcina (ed) Serv.Publics.UdG - Red Temática Nac.Reprod. Manual de Técnicas de Reproducción Asistida en Porcina

    Google Scholar 

  • Bussalleu E, Pinart E, Rivera MM, Arias X, Briz M, Sancho S, García-Gil N, Bassols J, Pruneda A, Yeste M, Casas I, Rigau T, Rodríguez-Gil JE, Bonet S (2008) Effects of filtration of semen doses from subfertile boars through neuter Sephadex columns. Reprod Domest Anim 43(1):48–52

    PubMed  CAS  Google Scholar 

  • Bussalleu E, Glaría I, Pinart E, Andrés Cara FD, Amorena B, Briz M, Sancho S, Yeste M, Bonet S (2009a) A PCR technique to detect the PRRS virus in blood and semen samples in boar. Reprod Dom Anim 44(3):84

    Article  Google Scholar 

  • Bussalleu E, Pinart E, Rivera MM, Briz M, Sancho S, Yeste M, Casas I, Fàbrega A, Rigau T, Rodríguez-Gil JE, Bonet S (2009b) Effects of matrix filtration of low-quality boar semen doses on sperm quality. Reprod Domest Anim 44(3):499–503

    Article  PubMed  CAS  Google Scholar 

  • Bussalleu E, Pinart E, Yeste M, Briz M, Sancho S, Torner E, Bonet S (2011a) A PCR technique to detect enterotoxigenic and verotoxigenic Escherichia coli in boar semen samples. Res Vet Sci 93(1):31–33

    Google Scholar 

  • Bussalleu E, Yeste M, Sepúlveda L, Torner E, Pinart E, Bonet S (2011b) Effects of different concentrations of enterotoxigenic and verotoxigenic E. coli on boar sperm quality. Anim Reprod Sci 127(3–4):176–182

    Google Scholar 

  • Cassuto NG, Sifer C, Naouri M, Bouret D, Blanc-Layrac G, Benifla JL, Neuraz A, Alvarez S, Madelenat P, Feldmann G, Devaux A (2001) Screening of hepatitis C virus (HCV) in the different fractions of semen from infected infertile men. Hum Reprod 16 Abst. O-139

    Google Scholar 

  • Cassuto NG, Sifer C, Feldmann G, Bouret D, Moret F, Benifla JL, Porcher R, Naourri M, Neuraz A, Alvarez S, Poncelet C, Madelenat P, Devaux A (2002) A modified RT-PCR technique to screen for viral RNA in the semen of hepatitis C virus-positive men. Hum Reprod 17:3153–3156

    Article  PubMed  CAS  Google Scholar 

  • Choi C, Chae C (2003) Detection of classical swine fever virus in boar semen by reverse transcription-polymerase chain reaction. J Vet Diagn Invest 15:35–41

    Article  PubMed  Google Scholar 

  • Christopher-Hennings J, Nelson E, Hines R, Nelson JK, Swenson SL, Zimmerman JJ, Chase CL, Yaeger MJ, Benfield DA (1995a) Persistence of porcine reproductive and respiratory syndrome virus in serum and semen of adult boars. J Vet Diagn Invest 7:456–464

    Article  PubMed  CAS  Google Scholar 

  • Christopher-Hennings J, Nelson E, Nelson, Hines RJ, Swenson SL, Hill HT, Zimmerman JJ, Katz JB, Yaeger MJ, Chase CC et al (1995b) Detection of porcine reproductive and respiratory syndrome virus in boar semen by PCR. J Clin Microbiol 33:244–247

    Google Scholar 

  • Christopher-Hennings J, Nelson E, Nelson J, Rossow KD, Shivers JL, Yaeger MJ, Chase CC, Garduno RA, Collins JE, Benfield DA (1998) Identification of porcine reproductive and respiratory syndrome virus in semen and tissues from vasectomised and nonvasectomized boars. Vet Pathol 35:260–267

    Article  PubMed  CAS  Google Scholar 

  • Ciornei St GR, Runceanu L, Rosca P, Drugociu D (2008) The microbiological cargo of seminal doses by boar and his possible effects. Lucrari stiintifice medicina veterinaria Timisoara XLI:213–219

    Google Scholar 

  • Colenbrander B, Feitsma H, Grooten HJ (1993) Optimizing semen production for artificial insemination in swine. J Reprod Fertil Suppl 48:207–215

    PubMed  CAS  Google Scholar 

  • Corona A, Cherchi R (2009) Microbial quality of equine frozen semen. Anim Reprod Sci 115:103–109

    Article  PubMed  CAS  Google Scholar 

  • Dagnall GJR (1986) An investigation of the bacterial flora of the preputial diverticulum ant of the semen of boars. M.Ph. thesis. Royal Veterinary College, Hertfordshire

    Google Scholar 

  • Danowski KM (1989) Qualitative and quantitative investigation of the germ content in boar semen ant he antibiotic sensivity of the prevailing sperm germ spectrum. Dr Med Vet Inaugural Dissertation, Tierarztliche Hochschule, Hannover

    Google Scholar 

  • de Smit A, Bouma A, Terpstra C, van Oirschot J (1999) Transmission of classical swine fever virus by artificial insemination. Vet Microbiol 67:239–249

    Article  PubMed  Google Scholar 

  • Diemer T, Weidner W, Michelmann HW, Schiefer HG, Rovan E, Mayer F (1996) Influence of Escherichia coli on motility parametres of human spermatozoa in vitro. Int J Androl 19:271–277

    Article  PubMed  CAS  Google Scholar 

  • Domínguez JC, Alegre B, González R, Tejerina F, Peláez J, Ferreras A, Bernal S, Cárdenas S (2006) Desarrollo histórico de la inseminación artificial porcina. In: Porcina (ed) Serv.Publics.UdG - Red Temática Nac.Reprod. Manual de Técnicas de Reproducción Asistida en Porcina

    Google Scholar 

  • Dziuk PJ (1996) Factors that influence the proportion of offspring sired by a male following heterospermic insemination. Anim Reprod Sci 43(2):65–88

    Article  Google Scholar 

  • Eaglesome MD, Garcia MM (1992) Microbial agents associated with bovine genital tract infection. Part I. Brucella abortus, Leptospira, Campylobacter fetus and Thricomonas foetus. Vet Bull 62:743–775

    Google Scholar 

  • Eaglesome MD, Garcia MM, Stewart RB (1992) Microbial agents associated with bovine genital tract infection and semen. Part II. Haemophilus somnus, Mycoplasma spp and Ureaplasma spp. Chlamydia, pathogens and semen contaminants, treatment of bull semen with antimicrobial agents. Vet Bull 62:887–910

    Google Scholar 

  • Englert Y, Lesage B, Van Vooren JP, Liesnard C, Place I, Vannin AS, Emiliani S, Delbaere A (2004) Medically assisted reproduction in the presence of chronic viral disease. Hum Reprod Update 10:149–162

    Article  PubMed  Google Scholar 

  • Etienne (1999) http://www.sites.ext.vt.edu/newsletter-archive/livestock/aps-99_09/aps-0123.html (Cited 24 Jan 2012)

  • Ferrarezi MZ, Cardoso TC, Dutra IS (2008) Genotyping of Clostridium perfringens isolated from calves with neonatal diaorrhea. Anaerobe 14:328–331

    Article  PubMed  CAS  Google Scholar 

  • Flaherty SP, Matthews CD (1996) Application of modern molecular techniques to evaluate sperm sex selection methods. Mol Hum Reprod 2(12):937–942

    Google Scholar 

  • Gadea J (2003) Semen extenders used in artificial insemination of swine. A review. Span J Agric Res 1(2):17–27

    Google Scholar 

  • Garner DL (2006) Flow cytometric sexong of mammalian sperm. Theriogenology 68:771–778

    Google Scholar 

  • GE Healthcare (2012) http://www.gelifesciences.com/APTRIX/upp01077.nsf/Content/Products?OpenDocument&parentid=549&moduleid=6844&cmpid=ppcaw514) (Cited 24 Jan 2012)

  • Gradil C, Sampath M, Eaglesome MD (1994) Detection of verotoxigenic Escherichia coli in bull semen using the polymerase chain reaction. Vet Microb 42:239–244

    Article  CAS  Google Scholar 

  • Grossfeld R, Klinc P, Sieg B, Rath D (2005) Production of piglets with sexed semen employing a non-surgical insemination technique. Theriogenology 63(8):2269–2277

    Article  PubMed  CAS  Google Scholar 

  • Guérin B, Pozzi N (2005) Viruses in boar semen: detection and clinical as well as epidemiological consequences regarding disease transmission by artificial insemination. Theriogenology 63:556–572

    Article  PubMed  Google Scholar 

  • Guibert J, Merlet F, Le Dû A, Leruez M, Heard I, Costagliola D, Mandelbrot L, Kunstmann JM, De Almeida M, Salmon D, Sicard D, Zorn JR, Rouzioux C, Jouannet P (2001) ICSI for HIV1 serodifferent couples: results of a preliminary study. Hum Reprod 16:Abst.O-140

    Google Scholar 

  • Hallap T, Haard M, Jaakma U, Larsson B, Rodriguez-Martinez H (2004) Does cleansing of frozen-thawed bull semen before assessment provide samples that relate better to potential fertility? Theriogenology 62(3–4):702–713

    Article  PubMed  Google Scholar 

  • Hamel A, Lin L, Sachvie C, Grudeski E, Nayar G (2000) PCR detection and characterization of type-2 porcine circovirus. Can J Vet Res 64:44–52

    PubMed  CAS  Google Scholar 

  • Hancock JL, Howel GJL (1959) The collection of boar semen. Vet Rec 71:664–665

    Google Scholar 

  • Haugan T, Reksen O, Gröhn YT, Gaustad AH, Hofmo PO (2005) A retrospective study on effects of storage time of liquid boar semen on reproductive performance in Norwegian swine. Theriogenology 64(4):891–901

    Article  PubMed  CAS  Google Scholar 

  • Holt WV, O’Brien J, Abaigar T (2007) Applications and interpretation of computer-assisted sperm analyses and sperm sorting methods in assisted breeding and comparative research. Reprod Fertil Dev 19(6):709–718

    Article  PubMed  Google Scholar 

  • Holt WV, Hernandez M, Warrel L, Satake N (2011) The long and the short of sperm selection in vitro and in vivo: swim-up techniques select for the longer and faster swimming mammalian sperm. J Evol Biol 23:598–608

    Article  Google Scholar 

  • Huo LJ, Ma XH, Yang ZM (2002) Assessment of sperm viability, mitochondrial activity, capacitation and acrosome intactness in extended boar semen during long-term storage. Theriogenology 58(7):1349–1360

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim NM, Foster DN, Crabo BG (2001) Localization of clusterin on freeze-preserved bull spermatozoa before and after glass wool-Sephadex filtration. J Androl 22(5):891–902

    PubMed  CAS  Google Scholar 

  • Januskauskas A, Lukoseviciute K, Nagy S, Johannisson A, Rodriguez-Martinez H (2005) Assessment of the efficacy of Sephadex G-15 filtration of bovine spermatozoa for cryopreservation. Theriogenology 63:160–178

    Article  PubMed  CAS  Google Scholar 

  • Jeyendran SR (2002) Sperm collection and processing methods.A practical guide. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson LA (1997) Advances in gender preselection in swine. J Reprod Fertil Suppl 52:255–266

    PubMed  CAS  Google Scholar 

  • Johnson LA (1998) Current developments in swine semen: preservations, artificial insemination and sperm sexing. Proc 15th Int Pig Vet Sci Congress 1:225–229

    Google Scholar 

  • Johnson LA, Pinkel D (1986) Modification of a laser-based blow cytometer for high-resolution DNA analysis of mammalian spermatozoa. Cytometry 7:268–273

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Flook JP, Look MV (1987) Flow cytometry of X and Y chromosome-bearing sperm for DNA using an improved preparation method and staining whith Hoechst 33342. Gamete Res 16:1–9

    Article  PubMed  CAS  Google Scholar 

  • Johnson DE, Confino E, Jeyendran RS (1996) Glass wool column filtration versus mini-Percoll gradient for processing poor quality semen samples. Fertil Steril 66(3):459–462

    PubMed  CAS  Google Scholar 

  • Johnson LA, Weitze KF, Fiser P, Maxwell WMC (2000) Storage of boar semen. Anim Reprod Sci 62:143–172

    Article  PubMed  CAS  Google Scholar 

  • Johnson LA, Rath D, Vazquez JM, Maxwell WM, Dobrinsky JR (2005) Preselection of sex of offspring in swine for production: current status of the process and its application. Theriogenology 63(2):615–624

    Article  PubMed  Google Scholar 

  • Kauffold J, Melzer F, Henning K, Schulze K, Leiding C, Sachse K (2006) Prevalence of chlamydiae in boars and semen used for artificial insemination. Theriogenology 65:1750–1758

    Article  PubMed  Google Scholar 

  • Kim J, Han D, Choi C, Chae C (2001) Differentiation of porcine circovirus (PCV)-1 and PCV-2 in boar semen using a multiplex nested polymerase chain reaction. J Virol Methods 98:25–31

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Han D, Choi C, Chae C (2003) Simultaneous detection and differentiation between porcine circovirus and porcine parvovirus in boar semen by multiplex seminested polymerase chain reaction. J Vet Med Sci 65:741–744

    Article  PubMed  CAS  Google Scholar 

  • King CJ, Mcpherson JW (1973) A comparison of two methods for boar semen collection. J Anim Sci 36:563–565

    PubMed  CAS  Google Scholar 

  • Larrochelle R, Bielanski A, Müller P, Magar R (2000) PCR detection and characteritzation of type-2 porcine circovirus. J Clin Microbiol 38:4629–4632

    Google Scholar 

  • Larsen RE, Shope RE, Leman AD, Kurtz HJ (1980) Semen changes in boars after experimental infection with Pseudorabies virus. Am J Vet Res 41:739

    Google Scholar 

  • Levy R, Bourlet T, Garcia A, Cordonier H, Salle B, Lorange J, Pozzette B, Guerin JF (2001) Assisted reproductive techniques (ART) in hepatitis C virus (HCV)-infected male patients: preliminary results. Hum Reprod 16 Abst O-141

    Google Scholar 

  • Lindemann CB, Fisher M, Lipton M (1982) A comparative study on the effect of freezing and frozen storage on intact and demembranated bull spermatozoa. Cryobiol 19:20–28

    Google Scholar 

  • Maes D, Nauwynck H, Rijsselaere T, Mateusen B, Vyt P, de Kruif A, Van Soom A (2008) Diseases in swine transmitted by artificial insemination: An overview. Theriogenology 70:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Maroto Martín LO, Cruz E, De Cupere F, Van Driessche E, Echemendia-Blanco D, Rodríguez JM, Beeckmans S (2010) Bacterial contamination of boar semen affects the litter size. Anim Reprod Sci 120:95–104

    Article  PubMed  Google Scholar 

  • Martin PA, Dziuk PJ (1977) Assessment of relative fertility of males (cockerels and boars) by competitive mating. J Reprod Fert 49:323–329

    Article  CAS  Google Scholar 

  • Martinez EA, Vazquez JM, Roca, Cuello C, Gil MA, Parrilla I, Vazquez JL (2005) An update on reproductive technologies with potential short-term application in pig production. Reprod Dom Anim 40:300–309

    Google Scholar 

  • Martín-Hidalgo D, Barón FJ, Bragado MJ, Carmona P, Robina A, García-Marín LJ, Gil MC (2011) The effect of melatonin on the quality of extended boar semen after long-term storage at 17 °C. Theriogenology 75:1550–1560

    Article  PubMed  CAS  Google Scholar 

  • McAdaragah J, Anderson G (1975) Transmission of viruses through boar semen. In: Proceedings of the 18th annual meeting of the American association of veterinary laboratory diagnosticians, pp 69–76

    Google Scholar 

  • McVicar J, Eisner R, Johnson L, Pursel V (1978) Foot-and-mouth disease and swine vesicular disease viruses in boar semen. In: Proceedings of the 81st annual meeting of the American animal health association, pp 221–230

    Google Scholar 

  • Medveczky I, Szabó I (1981) Isolation of Aujezky’s disease virus form boar semen. Acta Vet Acad Sci Hungariacae 29:29–35

    CAS  Google Scholar 

  • Mermin JH, Holodniy M, Katzenstein DA, Merigan TC (1991) Detection of human immunodeficiency virus DNA and RNA in semen by the polymerase chain reaction. J Infect Dis 164:769–772

    Article  PubMed  CAS  Google Scholar 

  • Milovanov VK (1962) Biology of reproduction and artificial insemination of animals. Selhozizdat, Moscow, p 969 (in Russian)

    Google Scholar 

  • Monga M, Roberts JA (1994) Sperm agglutination by bacteria: receptor-specific interactions. J Androl 15:151–156

    PubMed  CAS  Google Scholar 

  • Morrel JM, Rodriguez-Martinez H (2010) Practical applications of sperm selection techniques as a tool for improving reproductive efficiency. Vet Med Int. doi:10.4061/2011/894767

    Google Scholar 

  • Morrel JM, Sakkas D, Moffatt O, Manicardi GC, Bizzaro D, Holmes PV (2001) Reduced senescence and retained chromatin integrity in human sperm prepared by density gradient centrifugation. J Androl Suppl Abst P5/6-034

    Google Scholar 

  • Morrel JM, Sakkas D, Moffatt O, Manicardi GC, Bizzaro D, Holmes PV (2004) Reduced senescence and retained chromatin integrity in human spermatozoa prepared by density gradient centrifugation. J Assist Reprod Gen 21:217–222

    Article  Google Scholar 

  • Morrell JM, Wallgrem M (2011) Removal of bacteria from boar ejaculates by single layer centrifugation can reduce the use of antibiotics in semen extenders. Anim Reprod Sci 123:64–69

    Article  PubMed  CAS  Google Scholar 

  • Mortimer D (2000) Sperm preparation methods. J Androl 21(3):357–366

    PubMed  CAS  Google Scholar 

  • Morton KM, Herrmann D, Sieg B, Struckmann C, Maxwell WM, Rath D, Evans G, Lucas-Hahn A, Niemann H, Wrenzyckic C (2007) Altered mRNA expression patterns in bovine blastocysts after fertilisation in vitro using flow-cytometrically sex-sorted sperm. Mol Reprod Dev 74(8):931–940

    Article  PubMed  CAS  Google Scholar 

  • Nicholson CM, Abramsson L, Holm SE, Bjurulf E (2000) Bacterial contamination and sperm recovery after semen preparation by density gradient centrifugation using silanecoated silica particles at different g forces. Hum Reprod 15:662–666

    Article  PubMed  CAS  Google Scholar 

  • O’Flaherty C, Beconi M, Beorlegui N (1997) Effect of natural antioxidants, superoxide dismutase and hydrogen peroxide on capcitation of frozen-thawed bull spermatozoa. Andrologia 29:269–275

    Article  PubMed  Google Scholar 

  • Ogasa A, Yokoki Y, Fujisaki Y, Habu A (1977) Reproductive disorders in boars infected experimentally with Japanese encephalitis virus. Jpn J Animal Reprod 27:21–26

    Google Scholar 

  • OIE (2011) Terrestrial animal health code (TAHC). Available via World Organisation for Animal Health (Office International des Epizooties). http://www.oie.int/publications-and-documentation/general-information/. Cited 24 Jan 2012

  • Parrilla I, Vázquez JM, Oliver-Bonet M, Navarro J, Yelamos J, Roca J, Martínez EA (2003) Fluorescence in situ hybridization in diluted and flow cytometrically sorted boar spermatozoa using specific DNA direct probes labelled by Nick Translation. Reproduction 126:317–325

    Article  PubMed  CAS  Google Scholar 

  • Parrish JJ, Susko-Parrish JL, First NL (1999) Capacitation of bovine sperm by heparin: inhibitory effect of glucose and role of intracellular pH. Biol Reprod 41:683–699

    Article  Google Scholar 

  • Pertoft H (2000) Fractionation of cells and subcellular particles with Percoll. J Biochem Biophys Met 44(1–2):1–30

    Article  CAS  Google Scholar 

  • Phillips R, Foley C, Lukert P (1972) Isolation and characterization of viruses from semen and the reproductive tract of male swine. J Am Vet Med Assoc 161:1306–1316

    PubMed  CAS  Google Scholar 

  • Plisko NT (1965) Method of prolonging the viability and fertilising capacity of boar spermatozoa. Svinovodstvo 9(6):37–41 (in Russian)

    Google Scholar 

  • Prieto C, Suárez P, Bautista J, Sánchez R, Rillo SM, Simarro I, Solana A, Castro JM (1996) Semen changes in boars after experimental infection wiht porcine reproductive and respiratory syndrome (PRRS) virus. Theriogenology 45:383–395

    Article  PubMed  CAS  Google Scholar 

  • Pursel VG, Johnson LA (1975) Freezing of boar spermatozoa: Fertilizing capacity with concentrated semen and a new thawing procedure. J Anim Sci 40:99–102

    PubMed  CAS  Google Scholar 

  • Ramió-Lluch L, Balasch S, Bonet S. Briz M, Pinart E, Rodríguez-Gil JE (2009) Effects of filtration through Sephadex columns improve overall quality parameters and “in vivo” fertility of subfertile refrigerated boar-semen. Anim Reprod Sci 115(1–4):189–200

    Google Scholar 

  • Rath D, Johnson LA (2008) Application and commercialization of flow cytometrically sex-sorted semen. Reprod Dom Anim 43(2):338–346

    Article  Google Scholar 

  • Rath D, Ruiz S, Sieg B (2003) Birth of female piglets following intrauterine insemination of a sow using flow cytometrically sexed boar semen. Vet Rec 152:400–401

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Martinez H, Ohanian C, Bustos-Obregon E (1985) Nuclear chromatin decondesation of spermatozoa in vitro: a method for evaluating the fertilizing ability of ovine semen. Int J Androl 8:147–158

    Article  Google Scholar 

  • Saacke RG, DeJarnette JM, Nebel RL, Nadir S (1991) Assessing bull fertility. Proc Soc Theriogenol 59–69, San Diego

    Google Scholar 

  • Sakkas D, Manicardi GC, Tomlinson M, Mandrioli M, Bizzaro D, Bianchi PC, Bianchi U (2000) The use of two density gradient centrifugation techniques and the swim-up method to separate spermatozoa wiht chromatin and nuclear DNA anomalies. Hum Reprod 15:1112–1116

    Article  PubMed  CAS  Google Scholar 

  • Schilling E, Lafrenz R, Klobasa F (1978) Failure to separate human X- and Y- chromosome bearing spermatozoa by Sephadex gel-filtration. Andrologia 10(3):215–217

    Article  PubMed  CAS  Google Scholar 

  • Schulz M, Sánchez R, Soto L, Risopatrón J, Villegas J (2010) Effect of Escherichia coli and its soluble factors on mitochondrial membrane potential, phosphatidylserine translocation, viability, and motility of human spermatozoa. Fertil Steril 94:619–623

    Article  PubMed  CAS  Google Scholar 

  • Serdiuk SI (1970) Artificial Insemination of pigs (in Russian). Kolos, Moscow, p 144

    Google Scholar 

  • Shannon P, Curson B (1972) Toxic effect and action of dead sperm on diluted bovine semen. J Dairy Sci 55:615–620

    Article  Google Scholar 

  • Shastry PR, Hegle UC, Rao SS (1977) Use of Ficoll-sodium metrizoate density gradient to separate human X-and Y-bearing spermatozoa. Nature 269(5623):58–60

    Article  PubMed  CAS  Google Scholar 

  • Shin J, Torrison J, Choi C, Gonzalez SM, Crabo BG, Molitor TW (1997) Monitoring of porcine reproductive and respiratory syndrome virus in boars. Am J Vet Res 58:40–45

    Google Scholar 

  • Sieme H, Martinsson G, Rauterber H et al (2003) Application of techniques for sperm selection in fresh and frozen-thawed stallion sperm. Reprod Dom Anim 38:134–140

    Article  CAS  Google Scholar 

  • Silva DM, Zangeronimo MG, Murgas LDS, Rocha LG, Chaves BR, Pereira BA, Cunha EC (2011) Addition of IGF-I to storage-cooled boar semen and its effect on sperm motility. Growth Horm IGF Res 21:325–330

    Article  PubMed  CAS  Google Scholar 

  • Singleton WL (2002) A guide to basic Boar Semen collection, evaluation and processing procedures. In: http://www.ansc.purdue.edu/swine/porkpage/repro/pubs/basic2.htm (Cited 24 Jan 2012)

  • Solis M, Ramirez-Mendoza H, Mercado C, Espinosa S, Vallejo V, Reyes-Leyva J, Hernández J (2007) Semen alterations in porcine rubulavirus-infected boars are related to viral excretions and have implications for artificial insemination. Res Vet Sci 83:403–409

    Article  PubMed  CAS  Google Scholar 

  • Somfai T, Bodó S, Nagy S, Papp AB, Iváncsics J, Barangai B, Gócza E, Kovács A (2002) Effect of swim up and Percoll treatment on viability an acrosome integrity of frozen-thawed bull spermatozoa. Reprod Dom Anim 37:285–290

    Article  CAS  Google Scholar 

  • Sone M (1990) Investigations on the control of bacteria in boar semen. Jpn J Anim Reprod 36:23–29

    Article  Google Scholar 

  • Sone M, Kawarasaki T, Ogasa A, Nakahara T (1989) Effects of bacteria-contaminated boaser semen on the reproductive performance. Jpn J Anim Reprod 35:159–164

    Article  Google Scholar 

  • Spinaci M, Volpe S, Bernardini, de Ambrogi M, Tamanini C, Seren E, Galeati G (2006) Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa. J Androl 27(6):899–907

    Google Scholar 

  • Swenson S, Hill H, Zimmerman J, Evans Le, Landgraf JG, Wills RW, Sanderson TP, McGinley MJ, Brevik AK, Ciszewski DK et al (1994a) Excretion of porcine reproductive and respiratory syndrome (PRRS) virus in semen after experimentally induced infection in boars. J Am Med Assoc 504:1943–1948

    Google Scholar 

  • Swenson S, Hill H, Zimmerman J, Evans Le, Landgraf JG, Wills RW, Sanderson TP, McGinley MJ, Brevik AK, Ciszewski DK et al (1994b). Artificial insemination of gilts with porcine reproductive and respiratory syndrome (PRRS) virus-contaminated semen. Swine Health Prod 2:19–23

    Google Scholar 

  • Tamuli MK, Sharma DK, Rajkonwar CK (1984) Studies on the microbial flora of boar semen. Indian Vet J 61:858–861

    Google Scholar 

  • ThePigSite (2011) The website for the global pig industry. http://www.thepigsite.com (Cited 24 Jan 2012)

  • Thomson J (2001) Etiología y control de las enfermedades entéricas en porcino. Anaporc Abril 36–46

    Google Scholar 

  • Tomlinson MJ, Moffat O, Manicardi GC, Bizzaro D, Sakkas D (2001) Sperm morphology and nuclear DNA integrity after density gradient centrifugation (DGC) through PureSperm®: relationship to IVF outcome. J Androl (Suppl.) Abst. P3/4-100

    Google Scholar 

  • Upreti GC, Riches PC, Johnson LA (1998) Attempted sexing of bovine spermatozoa by fractionation on a Percoll density gradient. Gamete Res 20(1):83–92

    Article  Google Scholar 

  • Vannier P, Gueguen B (1979) Excrétion du virus de la maladie d’Aujezky par les voies genitals mâles du porc. J Rech Porcine 40:1–6

    Google Scholar 

  • Vazquez JM, Martinez EA, Parrilla I, Roca J, Gil MA, Vazquez JL (2003) Birth of piglets after deep intrauterine insemination with flow cytometrically sorted spermatozoa. Theriogenology 59:1605–1614

    Article  PubMed  Google Scholar 

  • Vazquez JM, Parrilla I, Roca J (2009) Sex-sorting sperm by flow cytometry in pigs: issues and perspectives. Theriogenology 71(1):80–88

    Article  PubMed  CAS  Google Scholar 

  • Villegas J, Schulz M, Soto L, Sanchez R (2005) Bacteria induce expression of apoptosis in human spermatozoa. Apoptosis 10:105–110

    Article  PubMed  CAS  Google Scholar 

  • Vyt P, Maes D, Dejonckheere E, Castryck F, Van Soom A (2004) Comparative study on five different commercial extenders for boar semen. Reprod Dom Anim 39:8–12

    Article  CAS  Google Scholar 

  • Welch GR, Johnson LA (1999) Sex preselection: laboratory validation of the sperm sex ratio of flowed sorted X- and Y- sperm by sort reanalysis for DNA. Theriogenology 52:1343–1352

    Article  PubMed  CAS  Google Scholar 

  • Wittman G (1989) Die bedeutung viraler erkrankungen beim schwein für die besamung un den embryotransfer. Tierärztl Umschau 44:580–586

    Google Scholar 

  • Wolff H, Panhans A, Soltz W, Meurer M (1993) Adherence of Escherichia coli to sperm: a mannose mediated phenomenon leading to agglutination of sperm and E.coli. Fertil Steril 60:154–158

    PubMed  CAS  Google Scholar 

  • Yániz JL, Marco-Aguado MA, Mateos JA, Santolaria P (2010) Bacterial contamination of ram sperm, antibiotic sensitivities, and effects on sperm quality during storage at 15 °C. Anim Reprod Sci 122:142–149

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz A, Gun H, Ugur M, Turan N, Yilmaz H (2006) Detection and frequency of VT1, VT2 and eaeA genes in Escherichia coli O157 and O157:H7 strains isolated from cattle, cattle carcasses and abattoir environment in Istanbul. Int J Food Microbiol 106(2):213–217

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Zhao M, Ruesch L, Omot A, Francis D et al (2007) Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Vet Microbiol 123(1–3):145–152

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bussalleu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bussalleu, E., Torner, E. (2013). Quality Improvement of Boar Seminal Doses. In: Bonet, S., Casas, I., Holt, W., Yeste, M. (eds) Boar Reproduction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35049-8_10

Download citation

Publish with us

Policies and ethics