Advertisement

Quality Improvement of Boar Seminal Doses

  • E. BussalleuEmail author
  • E. Torner
Chapter

Abstract

The implementation of artificial insemination techniques (AI) has been a turning point in the swine industry. To prepare doses for AI, semen must be collected by following a serial procedure involving high hygiene measures handling in order to minimise microbiological risk. One of these practices is the inclusion of antibiotics in the extenders, the aqueous media used for packing seminal doses that contain elements for assuring the survival of sperm cells for a short or long time period. However, a certain degree of microbial contamination cannot always be prevented, and in this case sperm quality and sanity standards of AI are better preserved if, prior to selling or freezing the doses, microbes are removed by applying methodologies, such as sperm filtration and sperm washing. Additionally, the demand for doses with a high ratio of X- or Y-bearing sperm is increasing due to the particular structure of commercial pig production; hence, it is also necessary to optimise current sex-deviation techniques. All these topics will be fully discussed in the present chapter.

Keywords

Sperm Cell Seminal Plasma Artificial Insemination Sperm Quality African Swine Fever Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adiga S, Kumar P (2001) Influence of swim-up method on the recovery of spermatozoa from different types of semen samples. J Assist Reprod Genet 18:160–164PubMedCrossRefGoogle Scholar
  2. Afshar A, Eaglesome MD (1990) Viruses associated with bovine semen. Vet Bull 60:93–109Google Scholar
  3. Agarwal A, Ranganathan P (2001) Higher rates of recovery with puresperm density gradients compared to isolate. Hum Reprod 16:P-053Google Scholar
  4. Ahmad Z, Anzar M, Shahab M, Ahmad N, Andrabi SM (2003) Sephadex and Sephadex ion-exchange filtration improves the quality and freezability of low-grade buffalo semen ejaculates. Theriogenology 59:1189–1202Google Scholar
  5. Aitken RJ, Curry BJ (2011) Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal 14:367–381 (Review)Google Scholar
  6. Althouse G (2007) Artificial insemination in swine: boar stud management. In: Current therapy in larg animal theriogenology, 2nd edn, pp 731–738Google Scholar
  7. Althouse GC (2008) Sanitary procedures for the production of extended semen. Reprod Dom Anim 43(Supp. 2):374–378CrossRefGoogle Scholar
  8. Althouse GC, Lu KG (2005) Bacteriospermia in extended porcine semen. Theriogenology 63:573–584PubMedCrossRefGoogle Scholar
  9. Althouse GC, Kuster CE, Clark SG, Weisiger RM (2000) Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology 53:1167–1176PubMedCrossRefGoogle Scholar
  10. Alvarez JG, Storey BT (1982) Spontaneous lipid peroxidation in rabbit epididymal spermatozoa: its effect on sperm motility. Biol Reprod 27:1102–1108 Anim Reprod Sci 127(3–4):176–182PubMedCrossRefGoogle Scholar
  11. Am-in N, Kirkwood RN, Techakumphu M, Tantasuparuk W (2011) Lipid profiles of sperm and seminal plasma from boars having normal or low sperm motility. Theriogenology 75:897–903PubMedCrossRefGoogle Scholar
  12. Anzar M, Graham EF, Iqbal N (1997) Post-thaw plasma membrane integrity of bull spermatozoa separated with a Sephadex ion-exchange column. Theriogenology 47(4):845–856PubMedCrossRefGoogle Scholar
  13. Auroux MR, Jacques L, Mathieu D, Auer J (1991) Is the sperm bacterial ratio a determining factor in impairment of sperm motility: an in vitro study in man with Escherichia coli. Intl J Androl 14:264–270CrossRefGoogle Scholar
  14. Basurto-Kuba VM, Evans LE (1981) Comparison of sperm-rich fractions of boar semen collected by electroejaculation and the gloved-hand technique. J Am Vet Med Assoc 178(9):985–986PubMedGoogle Scholar
  15. Bathgate R (2008) Functional integrity of sex-sorted, frozen-thawed boar sperm and its potential for artificial insemination. Theriogenology 70:1234–1241PubMedCrossRefGoogle Scholar
  16. Björndahl M, Mohammadieh M, Pourian M, Söderlund I, Kvist U (2005) Contamination by semial plasma andrology lab corner factors during sperm selection. J Androl 26(2):170–173PubMedGoogle Scholar
  17. Bolarín AG (2011) Bacteriología en semen de porcino. Av Tecnol Porc VIII 5:20–30Google Scholar
  18. Bujan L, Daudin M, Righi L,Thauvin L, Mieusset R, Puel J, Izopet J, Pasquier C (2001) Effectiveness of “sperm washing” to recover spermatozoa without HIV and HCV genomes detection in HIV infected men. J Androl (Suppl):Abst P1/2-142Google Scholar
  19. Bujan L, Daudin M, Alvarez M, Massip P, Puel J, Pasquier C (2002) Intermittent human immunodeficiency type 1 virus (HIV-1) shedding in semen and efficiency of sperm processing despite high seminal HIV-1 RNA levels. Fertil Steril 78:1321–1323PubMedCrossRefGoogle Scholar
  20. Bussalleu E, Pinart E, Yeste M, Briz M, Sancho S, Garcia-Gil N, Badia E, Bassols J, Pruneda A, Casas I, Bonet S (2005) Development of a protocol for multiple staining with fluorochromes to assess the functional status of boar spermatozoa. Micros Res Tech 68(5):277–283CrossRefGoogle Scholar
  21. Bussalleu E, Pinart E, Briz M, Sancho S, García-Gil N, Bassols J, Pruneda A, Yeste M, Casas I, Bonet S (2006) Filtración de dosis seminales en distintas matrices. In: Porcina (ed) Serv.Publics.UdG - Red Temática Nac.Reprod. Manual de Técnicas de Reproducción Asistida en PorcinaGoogle Scholar
  22. Bussalleu E, Pinart E, Rivera MM, Arias X, Briz M, Sancho S, García-Gil N, Bassols J, Pruneda A, Yeste M, Casas I, Rigau T, Rodríguez-Gil JE, Bonet S (2008) Effects of filtration of semen doses from subfertile boars through neuter Sephadex columns. Reprod Domest Anim 43(1):48–52PubMedGoogle Scholar
  23. Bussalleu E, Glaría I, Pinart E, Andrés Cara FD, Amorena B, Briz M, Sancho S, Yeste M, Bonet S (2009a) A PCR technique to detect the PRRS virus in blood and semen samples in boar. Reprod Dom Anim 44(3):84CrossRefGoogle Scholar
  24. Bussalleu E, Pinart E, Rivera MM, Briz M, Sancho S, Yeste M, Casas I, Fàbrega A, Rigau T, Rodríguez-Gil JE, Bonet S (2009b) Effects of matrix filtration of low-quality boar semen doses on sperm quality. Reprod Domest Anim 44(3):499–503PubMedCrossRefGoogle Scholar
  25. Bussalleu E, Pinart E, Yeste M, Briz M, Sancho S, Torner E, Bonet S (2011a) A PCR technique to detect enterotoxigenic and verotoxigenic Escherichia coli in boar semen samples. Res Vet Sci 93(1):31–33Google Scholar
  26. Bussalleu E, Yeste M, Sepúlveda L, Torner E, Pinart E, Bonet S (2011b) Effects of different concentrations of enterotoxigenic and verotoxigenic E. coli on boar sperm quality. Anim Reprod Sci 127(3–4):176–182Google Scholar
  27. Cassuto NG, Sifer C, Naouri M, Bouret D, Blanc-Layrac G, Benifla JL, Neuraz A, Alvarez S, Madelenat P, Feldmann G, Devaux A (2001) Screening of hepatitis C virus (HCV) in the different fractions of semen from infected infertile men. Hum Reprod 16 Abst. O-139Google Scholar
  28. Cassuto NG, Sifer C, Feldmann G, Bouret D, Moret F, Benifla JL, Porcher R, Naourri M, Neuraz A, Alvarez S, Poncelet C, Madelenat P, Devaux A (2002) A modified RT-PCR technique to screen for viral RNA in the semen of hepatitis C virus-positive men. Hum Reprod 17:3153–3156PubMedCrossRefGoogle Scholar
  29. Choi C, Chae C (2003) Detection of classical swine fever virus in boar semen by reverse transcription-polymerase chain reaction. J Vet Diagn Invest 15:35–41PubMedCrossRefGoogle Scholar
  30. Christopher-Hennings J, Nelson E, Hines R, Nelson JK, Swenson SL, Zimmerman JJ, Chase CL, Yaeger MJ, Benfield DA (1995a) Persistence of porcine reproductive and respiratory syndrome virus in serum and semen of adult boars. J Vet Diagn Invest 7:456–464PubMedCrossRefGoogle Scholar
  31. Christopher-Hennings J, Nelson E, Nelson, Hines RJ, Swenson SL, Hill HT, Zimmerman JJ, Katz JB, Yaeger MJ, Chase CC et al (1995b) Detection of porcine reproductive and respiratory syndrome virus in boar semen by PCR. J Clin Microbiol 33:244–247Google Scholar
  32. Christopher-Hennings J, Nelson E, Nelson J, Rossow KD, Shivers JL, Yaeger MJ, Chase CC, Garduno RA, Collins JE, Benfield DA (1998) Identification of porcine reproductive and respiratory syndrome virus in semen and tissues from vasectomised and nonvasectomized boars. Vet Pathol 35:260–267PubMedCrossRefGoogle Scholar
  33. Ciornei St GR, Runceanu L, Rosca P, Drugociu D (2008) The microbiological cargo of seminal doses by boar and his possible effects. Lucrari stiintifice medicina veterinaria Timisoara XLI:213–219Google Scholar
  34. Colenbrander B, Feitsma H, Grooten HJ (1993) Optimizing semen production for artificial insemination in swine. J Reprod Fertil Suppl 48:207–215PubMedGoogle Scholar
  35. Corona A, Cherchi R (2009) Microbial quality of equine frozen semen. Anim Reprod Sci 115:103–109PubMedCrossRefGoogle Scholar
  36. Dagnall GJR (1986) An investigation of the bacterial flora of the preputial diverticulum ant of the semen of boars. M.Ph. thesis. Royal Veterinary College, HertfordshireGoogle Scholar
  37. Danowski KM (1989) Qualitative and quantitative investigation of the germ content in boar semen ant he antibiotic sensivity of the prevailing sperm germ spectrum. Dr Med Vet Inaugural Dissertation, Tierarztliche Hochschule, HannoverGoogle Scholar
  38. de Smit A, Bouma A, Terpstra C, van Oirschot J (1999) Transmission of classical swine fever virus by artificial insemination. Vet Microbiol 67:239–249PubMedCrossRefGoogle Scholar
  39. Diemer T, Weidner W, Michelmann HW, Schiefer HG, Rovan E, Mayer F (1996) Influence of Escherichia coli on motility parametres of human spermatozoa in vitro. Int J Androl 19:271–277PubMedCrossRefGoogle Scholar
  40. Domínguez JC, Alegre B, González R, Tejerina F, Peláez J, Ferreras A, Bernal S, Cárdenas S (2006) Desarrollo histórico de la inseminación artificial porcina. In: Porcina (ed) Serv.Publics.UdG - Red Temática Nac.Reprod. Manual de Técnicas de Reproducción Asistida en PorcinaGoogle Scholar
  41. Dziuk PJ (1996) Factors that influence the proportion of offspring sired by a male following heterospermic insemination. Anim Reprod Sci 43(2):65–88CrossRefGoogle Scholar
  42. Eaglesome MD, Garcia MM (1992) Microbial agents associated with bovine genital tract infection. Part I. Brucella abortus, Leptospira, Campylobacter fetus and Thricomonas foetus. Vet Bull 62:743–775Google Scholar
  43. Eaglesome MD, Garcia MM, Stewart RB (1992) Microbial agents associated with bovine genital tract infection and semen. Part II. Haemophilus somnus, Mycoplasma spp and Ureaplasma spp. Chlamydia, pathogens and semen contaminants, treatment of bull semen with antimicrobial agents. Vet Bull 62:887–910Google Scholar
  44. Englert Y, Lesage B, Van Vooren JP, Liesnard C, Place I, Vannin AS, Emiliani S, Delbaere A (2004) Medically assisted reproduction in the presence of chronic viral disease. Hum Reprod Update 10:149–162PubMedCrossRefGoogle Scholar
  45. Ferrarezi MZ, Cardoso TC, Dutra IS (2008) Genotyping of Clostridium perfringens isolated from calves with neonatal diaorrhea. Anaerobe 14:328–331PubMedCrossRefGoogle Scholar
  46. Flaherty SP, Matthews CD (1996) Application of modern molecular techniques to evaluate sperm sex selection methods. Mol Hum Reprod 2(12):937–942Google Scholar
  47. Gadea J (2003) Semen extenders used in artificial insemination of swine. A review. Span J Agric Res 1(2):17–27Google Scholar
  48. Garner DL (2006) Flow cytometric sexong of mammalian sperm. Theriogenology 68:771–778Google Scholar
  49. Gradil C, Sampath M, Eaglesome MD (1994) Detection of verotoxigenic Escherichia coli in bull semen using the polymerase chain reaction. Vet Microb 42:239–244CrossRefGoogle Scholar
  50. Grossfeld R, Klinc P, Sieg B, Rath D (2005) Production of piglets with sexed semen employing a non-surgical insemination technique. Theriogenology 63(8):2269–2277PubMedCrossRefGoogle Scholar
  51. Guérin B, Pozzi N (2005) Viruses in boar semen: detection and clinical as well as epidemiological consequences regarding disease transmission by artificial insemination. Theriogenology 63:556–572PubMedCrossRefGoogle Scholar
  52. Guibert J, Merlet F, Le Dû A, Leruez M, Heard I, Costagliola D, Mandelbrot L, Kunstmann JM, De Almeida M, Salmon D, Sicard D, Zorn JR, Rouzioux C, Jouannet P (2001) ICSI for HIV1 serodifferent couples: results of a preliminary study. Hum Reprod 16:Abst.O-140Google Scholar
  53. Hallap T, Haard M, Jaakma U, Larsson B, Rodriguez-Martinez H (2004) Does cleansing of frozen-thawed bull semen before assessment provide samples that relate better to potential fertility? Theriogenology 62(3–4):702–713PubMedCrossRefGoogle Scholar
  54. Hamel A, Lin L, Sachvie C, Grudeski E, Nayar G (2000) PCR detection and characterization of type-2 porcine circovirus. Can J Vet Res 64:44–52PubMedGoogle Scholar
  55. Hancock JL, Howel GJL (1959) The collection of boar semen. Vet Rec 71:664–665Google Scholar
  56. Haugan T, Reksen O, Gröhn YT, Gaustad AH, Hofmo PO (2005) A retrospective study on effects of storage time of liquid boar semen on reproductive performance in Norwegian swine. Theriogenology 64(4):891–901PubMedCrossRefGoogle Scholar
  57. Holt WV, O’Brien J, Abaigar T (2007) Applications and interpretation of computer-assisted sperm analyses and sperm sorting methods in assisted breeding and comparative research. Reprod Fertil Dev 19(6):709–718PubMedCrossRefGoogle Scholar
  58. Holt WV, Hernandez M, Warrel L, Satake N (2011) The long and the short of sperm selection in vitro and in vivo: swim-up techniques select for the longer and faster swimming mammalian sperm. J Evol Biol 23:598–608CrossRefGoogle Scholar
  59. Huo LJ, Ma XH, Yang ZM (2002) Assessment of sperm viability, mitochondrial activity, capacitation and acrosome intactness in extended boar semen during long-term storage. Theriogenology 58(7):1349–1360PubMedCrossRefGoogle Scholar
  60. Ibrahim NM, Foster DN, Crabo BG (2001) Localization of clusterin on freeze-preserved bull spermatozoa before and after glass wool-Sephadex filtration. J Androl 22(5):891–902PubMedGoogle Scholar
  61. Januskauskas A, Lukoseviciute K, Nagy S, Johannisson A, Rodriguez-Martinez H (2005) Assessment of the efficacy of Sephadex G-15 filtration of bovine spermatozoa for cryopreservation. Theriogenology 63:160–178PubMedCrossRefGoogle Scholar
  62. Jeyendran SR (2002) Sperm collection and processing methods.A practical guide. Cambridge University Press, CambridgeGoogle Scholar
  63. Johnson LA (1997) Advances in gender preselection in swine. J Reprod Fertil Suppl 52:255–266PubMedGoogle Scholar
  64. Johnson LA (1998) Current developments in swine semen: preservations, artificial insemination and sperm sexing. Proc 15th Int Pig Vet Sci Congress 1:225–229Google Scholar
  65. Johnson LA, Pinkel D (1986) Modification of a laser-based blow cytometer for high-resolution DNA analysis of mammalian spermatozoa. Cytometry 7:268–273PubMedCrossRefGoogle Scholar
  66. Johnson LA, Flook JP, Look MV (1987) Flow cytometry of X and Y chromosome-bearing sperm for DNA using an improved preparation method and staining whith Hoechst 33342. Gamete Res 16:1–9PubMedCrossRefGoogle Scholar
  67. Johnson DE, Confino E, Jeyendran RS (1996) Glass wool column filtration versus mini-Percoll gradient for processing poor quality semen samples. Fertil Steril 66(3):459–462PubMedGoogle Scholar
  68. Johnson LA, Weitze KF, Fiser P, Maxwell WMC (2000) Storage of boar semen. Anim Reprod Sci 62:143–172PubMedCrossRefGoogle Scholar
  69. Johnson LA, Rath D, Vazquez JM, Maxwell WM, Dobrinsky JR (2005) Preselection of sex of offspring in swine for production: current status of the process and its application. Theriogenology 63(2):615–624PubMedCrossRefGoogle Scholar
  70. Kauffold J, Melzer F, Henning K, Schulze K, Leiding C, Sachse K (2006) Prevalence of chlamydiae in boars and semen used for artificial insemination. Theriogenology 65:1750–1758PubMedCrossRefGoogle Scholar
  71. Kim J, Han D, Choi C, Chae C (2001) Differentiation of porcine circovirus (PCV)-1 and PCV-2 in boar semen using a multiplex nested polymerase chain reaction. J Virol Methods 98:25–31PubMedCrossRefGoogle Scholar
  72. Kim J, Han D, Choi C, Chae C (2003) Simultaneous detection and differentiation between porcine circovirus and porcine parvovirus in boar semen by multiplex seminested polymerase chain reaction. J Vet Med Sci 65:741–744PubMedCrossRefGoogle Scholar
  73. King CJ, Mcpherson JW (1973) A comparison of two methods for boar semen collection. J Anim Sci 36:563–565PubMedGoogle Scholar
  74. Larrochelle R, Bielanski A, Müller P, Magar R (2000) PCR detection and characteritzation of type-2 porcine circovirus. J Clin Microbiol 38:4629–4632Google Scholar
  75. Larsen RE, Shope RE, Leman AD, Kurtz HJ (1980) Semen changes in boars after experimental infection with Pseudorabies virus. Am J Vet Res 41:739Google Scholar
  76. Levy R, Bourlet T, Garcia A, Cordonier H, Salle B, Lorange J, Pozzette B, Guerin JF (2001) Assisted reproductive techniques (ART) in hepatitis C virus (HCV)-infected male patients: preliminary results. Hum Reprod 16 Abst O-141Google Scholar
  77. Lindemann CB, Fisher M, Lipton M (1982) A comparative study on the effect of freezing and frozen storage on intact and demembranated bull spermatozoa. Cryobiol 19:20–28Google Scholar
  78. Maes D, Nauwynck H, Rijsselaere T, Mateusen B, Vyt P, de Kruif A, Van Soom A (2008) Diseases in swine transmitted by artificial insemination: An overview. Theriogenology 70:1337–1345PubMedCrossRefGoogle Scholar
  79. Maroto Martín LO, Cruz E, De Cupere F, Van Driessche E, Echemendia-Blanco D, Rodríguez JM, Beeckmans S (2010) Bacterial contamination of boar semen affects the litter size. Anim Reprod Sci 120:95–104PubMedCrossRefGoogle Scholar
  80. Martin PA, Dziuk PJ (1977) Assessment of relative fertility of males (cockerels and boars) by competitive mating. J Reprod Fert 49:323–329CrossRefGoogle Scholar
  81. Martinez EA, Vazquez JM, Roca, Cuello C, Gil MA, Parrilla I, Vazquez JL (2005) An update on reproductive technologies with potential short-term application in pig production. Reprod Dom Anim 40:300–309Google Scholar
  82. Martín-Hidalgo D, Barón FJ, Bragado MJ, Carmona P, Robina A, García-Marín LJ, Gil MC (2011) The effect of melatonin on the quality of extended boar semen after long-term storage at 17 °C. Theriogenology 75:1550–1560PubMedCrossRefGoogle Scholar
  83. McAdaragah J, Anderson G (1975) Transmission of viruses through boar semen. In: Proceedings of the 18th annual meeting of the American association of veterinary laboratory diagnosticians, pp 69–76Google Scholar
  84. McVicar J, Eisner R, Johnson L, Pursel V (1978) Foot-and-mouth disease and swine vesicular disease viruses in boar semen. In: Proceedings of the 81st annual meeting of the American animal health association, pp 221–230Google Scholar
  85. Medveczky I, Szabó I (1981) Isolation of Aujezky’s disease virus form boar semen. Acta Vet Acad Sci Hungariacae 29:29–35Google Scholar
  86. Mermin JH, Holodniy M, Katzenstein DA, Merigan TC (1991) Detection of human immunodeficiency virus DNA and RNA in semen by the polymerase chain reaction. J Infect Dis 164:769–772PubMedCrossRefGoogle Scholar
  87. Milovanov VK (1962) Biology of reproduction and artificial insemination of animals. Selhozizdat, Moscow, p 969 (in Russian)Google Scholar
  88. Monga M, Roberts JA (1994) Sperm agglutination by bacteria: receptor-specific interactions. J Androl 15:151–156PubMedGoogle Scholar
  89. Morrel JM, Rodriguez-Martinez H (2010) Practical applications of sperm selection techniques as a tool for improving reproductive efficiency. Vet Med Int. doi: 10.4061/2011/894767 Google Scholar
  90. Morrel JM, Sakkas D, Moffatt O, Manicardi GC, Bizzaro D, Holmes PV (2001) Reduced senescence and retained chromatin integrity in human sperm prepared by density gradient centrifugation. J Androl Suppl Abst P5/6-034Google Scholar
  91. Morrel JM, Sakkas D, Moffatt O, Manicardi GC, Bizzaro D, Holmes PV (2004) Reduced senescence and retained chromatin integrity in human spermatozoa prepared by density gradient centrifugation. J Assist Reprod Gen 21:217–222CrossRefGoogle Scholar
  92. Morrell JM, Wallgrem M (2011) Removal of bacteria from boar ejaculates by single layer centrifugation can reduce the use of antibiotics in semen extenders. Anim Reprod Sci 123:64–69PubMedCrossRefGoogle Scholar
  93. Mortimer D (2000) Sperm preparation methods. J Androl 21(3):357–366PubMedGoogle Scholar
  94. Morton KM, Herrmann D, Sieg B, Struckmann C, Maxwell WM, Rath D, Evans G, Lucas-Hahn A, Niemann H, Wrenzyckic C (2007) Altered mRNA expression patterns in bovine blastocysts after fertilisation in vitro using flow-cytometrically sex-sorted sperm. Mol Reprod Dev 74(8):931–940PubMedCrossRefGoogle Scholar
  95. Nicholson CM, Abramsson L, Holm SE, Bjurulf E (2000) Bacterial contamination and sperm recovery after semen preparation by density gradient centrifugation using silanecoated silica particles at different g forces. Hum Reprod 15:662–666PubMedCrossRefGoogle Scholar
  96. O’Flaherty C, Beconi M, Beorlegui N (1997) Effect of natural antioxidants, superoxide dismutase and hydrogen peroxide on capcitation of frozen-thawed bull spermatozoa. Andrologia 29:269–275PubMedCrossRefGoogle Scholar
  97. Ogasa A, Yokoki Y, Fujisaki Y, Habu A (1977) Reproductive disorders in boars infected experimentally with Japanese encephalitis virus. Jpn J Animal Reprod 27:21–26Google Scholar
  98. OIE (2011) Terrestrial animal health code (TAHC). Available via World Organisation for Animal Health (Office International des Epizooties). http://www.oie.int/publications-and-documentation/general-information/. Cited 24 Jan 2012
  99. Parrilla I, Vázquez JM, Oliver-Bonet M, Navarro J, Yelamos J, Roca J, Martínez EA (2003) Fluorescence in situ hybridization in diluted and flow cytometrically sorted boar spermatozoa using specific DNA direct probes labelled by Nick Translation. Reproduction 126:317–325PubMedCrossRefGoogle Scholar
  100. Parrish JJ, Susko-Parrish JL, First NL (1999) Capacitation of bovine sperm by heparin: inhibitory effect of glucose and role of intracellular pH. Biol Reprod 41:683–699CrossRefGoogle Scholar
  101. Pertoft H (2000) Fractionation of cells and subcellular particles with Percoll. J Biochem Biophys Met 44(1–2):1–30CrossRefGoogle Scholar
  102. Phillips R, Foley C, Lukert P (1972) Isolation and characterization of viruses from semen and the reproductive tract of male swine. J Am Vet Med Assoc 161:1306–1316PubMedGoogle Scholar
  103. Plisko NT (1965) Method of prolonging the viability and fertilising capacity of boar spermatozoa. Svinovodstvo 9(6):37–41 (in Russian)Google Scholar
  104. Prieto C, Suárez P, Bautista J, Sánchez R, Rillo SM, Simarro I, Solana A, Castro JM (1996) Semen changes in boars after experimental infection wiht porcine reproductive and respiratory syndrome (PRRS) virus. Theriogenology 45:383–395PubMedCrossRefGoogle Scholar
  105. Pursel VG, Johnson LA (1975) Freezing of boar spermatozoa: Fertilizing capacity with concentrated semen and a new thawing procedure. J Anim Sci 40:99–102PubMedGoogle Scholar
  106. Ramió-Lluch L, Balasch S, Bonet S. Briz M, Pinart E, Rodríguez-Gil JE (2009) Effects of filtration through Sephadex columns improve overall quality parameters and “in vivo” fertility of subfertile refrigerated boar-semen. Anim Reprod Sci 115(1–4):189–200Google Scholar
  107. Rath D, Johnson LA (2008) Application and commercialization of flow cytometrically sex-sorted semen. Reprod Dom Anim 43(2):338–346CrossRefGoogle Scholar
  108. Rath D, Ruiz S, Sieg B (2003) Birth of female piglets following intrauterine insemination of a sow using flow cytometrically sexed boar semen. Vet Rec 152:400–401PubMedCrossRefGoogle Scholar
  109. Rodriguez-Martinez H, Ohanian C, Bustos-Obregon E (1985) Nuclear chromatin decondesation of spermatozoa in vitro: a method for evaluating the fertilizing ability of ovine semen. Int J Androl 8:147–158CrossRefGoogle Scholar
  110. Saacke RG, DeJarnette JM, Nebel RL, Nadir S (1991) Assessing bull fertility. Proc Soc Theriogenol 59–69, San Diego Google Scholar
  111. Sakkas D, Manicardi GC, Tomlinson M, Mandrioli M, Bizzaro D, Bianchi PC, Bianchi U (2000) The use of two density gradient centrifugation techniques and the swim-up method to separate spermatozoa wiht chromatin and nuclear DNA anomalies. Hum Reprod 15:1112–1116PubMedCrossRefGoogle Scholar
  112. Schilling E, Lafrenz R, Klobasa F (1978) Failure to separate human X- and Y- chromosome bearing spermatozoa by Sephadex gel-filtration. Andrologia 10(3):215–217PubMedCrossRefGoogle Scholar
  113. Schulz M, Sánchez R, Soto L, Risopatrón J, Villegas J (2010) Effect of Escherichia coli and its soluble factors on mitochondrial membrane potential, phosphatidylserine translocation, viability, and motility of human spermatozoa. Fertil Steril 94:619–623PubMedCrossRefGoogle Scholar
  114. Serdiuk SI (1970) Artificial Insemination of pigs (in Russian). Kolos, Moscow, p 144Google Scholar
  115. Shannon P, Curson B (1972) Toxic effect and action of dead sperm on diluted bovine semen. J Dairy Sci 55:615–620CrossRefGoogle Scholar
  116. Shastry PR, Hegle UC, Rao SS (1977) Use of Ficoll-sodium metrizoate density gradient to separate human X-and Y-bearing spermatozoa. Nature 269(5623):58–60PubMedCrossRefGoogle Scholar
  117. Shin J, Torrison J, Choi C, Gonzalez SM, Crabo BG, Molitor TW (1997) Monitoring of porcine reproductive and respiratory syndrome virus in boars. Am J Vet Res 58:40–45Google Scholar
  118. Sieme H, Martinsson G, Rauterber H et al (2003) Application of techniques for sperm selection in fresh and frozen-thawed stallion sperm. Reprod Dom Anim 38:134–140CrossRefGoogle Scholar
  119. Silva DM, Zangeronimo MG, Murgas LDS, Rocha LG, Chaves BR, Pereira BA, Cunha EC (2011) Addition of IGF-I to storage-cooled boar semen and its effect on sperm motility. Growth Horm IGF Res 21:325–330PubMedCrossRefGoogle Scholar
  120. Singleton WL (2002) A guide to basic Boar Semen collection, evaluation and processing procedures. In: http://www.ansc.purdue.edu/swine/porkpage/repro/pubs/basic2.htm (Cited 24 Jan 2012)
  121. Solis M, Ramirez-Mendoza H, Mercado C, Espinosa S, Vallejo V, Reyes-Leyva J, Hernández J (2007) Semen alterations in porcine rubulavirus-infected boars are related to viral excretions and have implications for artificial insemination. Res Vet Sci 83:403–409PubMedCrossRefGoogle Scholar
  122. Somfai T, Bodó S, Nagy S, Papp AB, Iváncsics J, Barangai B, Gócza E, Kovács A (2002) Effect of swim up and Percoll treatment on viability an acrosome integrity of frozen-thawed bull spermatozoa. Reprod Dom Anim 37:285–290CrossRefGoogle Scholar
  123. Sone M (1990) Investigations on the control of bacteria in boar semen. Jpn J Anim Reprod 36:23–29CrossRefGoogle Scholar
  124. Sone M, Kawarasaki T, Ogasa A, Nakahara T (1989) Effects of bacteria-contaminated boaser semen on the reproductive performance. Jpn J Anim Reprod 35:159–164CrossRefGoogle Scholar
  125. Spinaci M, Volpe S, Bernardini, de Ambrogi M, Tamanini C, Seren E, Galeati G (2006) Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa. J Androl 27(6):899–907Google Scholar
  126. Swenson S, Hill H, Zimmerman J, Evans Le, Landgraf JG, Wills RW, Sanderson TP, McGinley MJ, Brevik AK, Ciszewski DK et al (1994a) Excretion of porcine reproductive and respiratory syndrome (PRRS) virus in semen after experimentally induced infection in boars. J Am Med Assoc 504:1943–1948Google Scholar
  127. Swenson S, Hill H, Zimmerman J, Evans Le, Landgraf JG, Wills RW, Sanderson TP, McGinley MJ, Brevik AK, Ciszewski DK et al (1994b). Artificial insemination of gilts with porcine reproductive and respiratory syndrome (PRRS) virus-contaminated semen. Swine Health Prod 2:19–23Google Scholar
  128. Tamuli MK, Sharma DK, Rajkonwar CK (1984) Studies on the microbial flora of boar semen. Indian Vet J 61:858–861Google Scholar
  129. ThePigSite (2011) The website for the global pig industry. http://www.thepigsite.com (Cited 24 Jan 2012)
  130. Thomson J (2001) Etiología y control de las enfermedades entéricas en porcino. Anaporc Abril 36–46Google Scholar
  131. Tomlinson MJ, Moffat O, Manicardi GC, Bizzaro D, Sakkas D (2001) Sperm morphology and nuclear DNA integrity after density gradient centrifugation (DGC) through PureSperm®: relationship to IVF outcome. J Androl (Suppl.) Abst. P3/4-100Google Scholar
  132. Upreti GC, Riches PC, Johnson LA (1998) Attempted sexing of bovine spermatozoa by fractionation on a Percoll density gradient. Gamete Res 20(1):83–92CrossRefGoogle Scholar
  133. Vannier P, Gueguen B (1979) Excrétion du virus de la maladie d’Aujezky par les voies genitals mâles du porc. J Rech Porcine 40:1–6Google Scholar
  134. Vazquez JM, Martinez EA, Parrilla I, Roca J, Gil MA, Vazquez JL (2003) Birth of piglets after deep intrauterine insemination with flow cytometrically sorted spermatozoa. Theriogenology 59:1605–1614PubMedCrossRefGoogle Scholar
  135. Vazquez JM, Parrilla I, Roca J (2009) Sex-sorting sperm by flow cytometry in pigs: issues and perspectives. Theriogenology 71(1):80–88PubMedCrossRefGoogle Scholar
  136. Villegas J, Schulz M, Soto L, Sanchez R (2005) Bacteria induce expression of apoptosis in human spermatozoa. Apoptosis 10:105–110PubMedCrossRefGoogle Scholar
  137. Vyt P, Maes D, Dejonckheere E, Castryck F, Van Soom A (2004) Comparative study on five different commercial extenders for boar semen. Reprod Dom Anim 39:8–12CrossRefGoogle Scholar
  138. Welch GR, Johnson LA (1999) Sex preselection: laboratory validation of the sperm sex ratio of flowed sorted X- and Y- sperm by sort reanalysis for DNA. Theriogenology 52:1343–1352PubMedCrossRefGoogle Scholar
  139. Wittman G (1989) Die bedeutung viraler erkrankungen beim schwein für die besamung un den embryotransfer. Tierärztl Umschau 44:580–586Google Scholar
  140. Wolff H, Panhans A, Soltz W, Meurer M (1993) Adherence of Escherichia coli to sperm: a mannose mediated phenomenon leading to agglutination of sperm and E.coli. Fertil Steril 60:154–158PubMedGoogle Scholar
  141. Yániz JL, Marco-Aguado MA, Mateos JA, Santolaria P (2010) Bacterial contamination of ram sperm, antibiotic sensitivities, and effects on sperm quality during storage at 15 °C. Anim Reprod Sci 122:142–149PubMedCrossRefGoogle Scholar
  142. Yilmaz A, Gun H, Ugur M, Turan N, Yilmaz H (2006) Detection and frequency of VT1, VT2 and eaeA genes in Escherichia coli O157 and O157:H7 strains isolated from cattle, cattle carcasses and abattoir environment in Istanbul. Int J Food Microbiol 106(2):213–217PubMedCrossRefGoogle Scholar
  143. Zhang W, Zhao M, Ruesch L, Omot A, Francis D et al (2007) Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Vet Microbiol 123(1–3):145–152PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Biotechnology of Animal and Human Reproduction (Technosperm), Department of BiologyInstitute of Food and Agricultural Technology, University of Girona, Campus MontiliviGironaSpain

Personalised recommendations