The Boar Spermatozoon

  • M. BrizEmail author
  • A. Fàbrega


The microscopic appearance of the boar spermatozoon allows us to appreciate both its inner and outer structural complexity. Both light and electron microscopy may be used to study the structure and ultrastructure of this highly specialized cell and the way it probably works to achieve successful fertilization. Compartmentalization of the spermatozoon is a critically important feature of its structure as it enables this cell to perform the variety of tasks needed to fulfill its role. Different sperm malformations usually affect some cellular components essential for the correct development of the spermatozoon–oocyte interaction in the fertility process. Careful assessment of sperm morphology may sometimes indicate the possible cause of sperm quality and fertility decrease. Moreover, regional specialization of the plasma membrane, related to lipid/protein composition and distribution, allows the underlying cellular molecules to interact independently with their external environment, thereby enabling the efficient performance of the various tasks necessary for successful fertilization.


Sperm Surface Fibrous Sheath Sperm Plasma Membrane Boar Spermatozoon Cytoplasmic Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ardón F, Helms D, Sahin, E, Bollwein H, Töpfer Petersen E, Waberski D (2008) Chromatin-unstable boar spermatozoa have little chance of reaching oocytes in vivo. Reproduction 135:461–470Google Scholar
  2. Arya M, Vanha-Perttula T (1985) Lectin-binding pattern of bull testis and epididymis. J Androl 6:230–242PubMedGoogle Scholar
  3. Austin CR (1995) Evolution of human gametes: spermatozoa. In: Grudzinskas JG, Yovich JL (eds) Gametes: the spermatozoon. Cambridge University Press, Cambridge, pp 1–19Google Scholar
  4. Bains HK, Sehgal S, Bawa SR (1992) Human sperm surface mapping with lectins. Acta Anat 145:207–211PubMedGoogle Scholar
  5. Belleannée C, Belghazi M, Labas V, Teixeira-Gomes A-P, Gatti JL, Dacheux J-L, Dacheux F (2011) Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics 11:1952–1964PubMedGoogle Scholar
  6. Blobel CP (2000) Functional processing of fertilin: evidence for a critical role of proteolysis in sperm maturation and activation. Rev Reprod 5:75–83PubMedGoogle Scholar
  7. Boerke A, Dieleman SJ, Gadella BM (2007) A possible role for sperm RNA in early embryo development. Theriogenology 68:147–155Google Scholar
  8. Bonet S (1987) Study of ejaculation of a pig submitted to a high rhythm of services in artificial insemination. Scient Gerund 13:35–40Google Scholar
  9. Bonet S (1990) Immature and aberrant spermatozoa in the ejaculate of sus domesticus. Anim Reprod Sci 22:67–80Google Scholar
  10. Bonet S, Briz M (1991a) Comparison between the conventional method and the simple desiccation method in porcine sperm processing for scanning electron microscopy. J Microsc-Oxford 162:291–294Google Scholar
  11. Bonet S, Briz M (1991b) New data on aberrant spermatozoa in the ejaculate of sus domesticus. Theriogenology 35:725–730PubMedGoogle Scholar
  12. Bonet S, Briz M, Fradera A, Egozcue J (1992) Origin, development and ultrastructure of boar spermatozoa with folded tails and with two tails. Hum Reprod 7:523–528PubMedGoogle Scholar
  13. Bonet S, Briz M, Fradera A (1993) Ultrastructural abnormalities of boar spermatozoa. Theriogenology 40:383–396PubMedGoogle Scholar
  14. Bonet S, Briz M, Fradera A (1994a) Contrastación del esperma de porcino al microscopio electrónico de barrido. In: Tratado de ganado porcino: técnicas de contrastación seminal, vol 21. Editorial Luzán 5, Madrid, pp 21–28Google Scholar
  15. Bonet S, Briz M, Fradera A (1994b) Contrastación del esperma de porcino al microscopio electrónico de transmisión. In: Tratado de ganado porcino: Técnicas de contrastación seminal, vol 21. Editorial Luzán 5, Madrid, pp 31–44Google Scholar
  16. Bonet S, Briz M, Pinart E, Camps R, Fradera A, Casadevall M (1995) Light microscopy characterization of sperm morphology. Microsc Anal 9:29–31Google Scholar
  17. Bonet S, Briz M, Pinart E, Sancho S, Garcia-Gil N, Badia E (2000) Morphology of boar spermatozoa. Institut d’Estudis Catalans, BarcelonaGoogle Scholar
  18. Bonet S, Briz M, Pinart E, Sancho S, García-Gil N, Badia E, Bassols J, Pruneda A, Bussalleu E, Yeste M, Casas I, Carreras A (2006) Análisis de la morfología espermática al microscopio electrónico de barrido y al microscopio electrónico de transmisión. In: Bonet S, Martínez E, Rodríguez-Gil JE, Barrera X (eds) Biotecnología de la reproducción porcina: manual de técnicas de reproducción asistida en porcino. Servicio Publicaciones UdG—Red Temática Nacional Reproducción Porcina, Girona, pp 39–50Google Scholar
  19. Brewis IA, Gadella BM (2010) Sperm surface proteomics: from protein lists to biological function. Mol Hum Reprod 16:68–79PubMedGoogle Scholar
  20. Briz M, Fradera A, Bonet S, Pinart E (1993) Analysis of the seminal characteristics of a boar with impaired fertility. Scient Gerund 19:53–60Google Scholar
  21. Briz M (1994) Microscopical analysis of the ejaculated sperm and the sperm epididymal maturation of sus domesticus. Doctoral Thesis, pp 308. Available via
  22. Briz M, Bonet S, Pinart E, Egozcue J, Camps R (1995) Comparative study of boar sperm coming from the caput, corpus and cauda regions of the epididymis. J Androl 16:175–188PubMedGoogle Scholar
  23. Briz M, Bonet S, Pinart E, Camps R (1996) Sperm malformations throughout the boar epididymal duct. Anim Reprod Sci 43:221–239Google Scholar
  24. Brown CR, von Glos KI, Jones R (1983) Changes in plasma membrane glycoproteins of rat spermatozoa during maturation in the epididymis. J Cell Biol 96:256–264PubMedGoogle Scholar
  25. Bucci D, Isani G, Spinaci M, Tamanini C, Mari G, Zambelli D, Galeati G (2010) Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa. Reprod Domest Anim 45:315–322PubMedGoogle Scholar
  26. Bucci D, Rodriguez-Gil JE, Vallorani C, Spinaci M, Galeati G, Tamanini C (2011) GLUTs and mammalian sperm metabolism. J Androl 32:348–355PubMedGoogle Scholar
  27. Calvo A, Pastor LM, Bonet S, Pinart E, Ventura M (2000) Characterization of the glycoconjugates of boar testis and epididymis. J Reprod Fertil 120:325–335PubMedGoogle Scholar
  28. Calvo A, Pastor LM, Horn R, Pallares J (1995) Histochemical study of glycoconjugates in the epididymis of the hamster (Mesocricetus auratus). Histochem J 27:670–680PubMedGoogle Scholar
  29. Carmona E, Weerachatyanukul W, Soboloff T, Fluharty AL, White D, Promdee L, Ekker M, Berger T, Buhr M, Tanphaichitr N (2002) Arylsulfatase a is present on the pig sperm surface and is involved in sperm-zona pellucida binding. Dev Biol 247:182–196PubMedGoogle Scholar
  30. Casas I, Sancho S, Ballester J, Briz M, Pinart E, Bussalleu E, Yeste M, Fàbrega A, Rodríguez-Gil JE, Bonet S (2010) The HSP90AA1 sperm content and the prediction of the boar ejaculate freezability. Theriogenology 74:940–950PubMedGoogle Scholar
  31. Casas I, Sancho S, Briz M, Pinart E, Bussalleu E, Yeste M, Bonet S (2009) Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins. Theriogenology 72:930–948PubMedGoogle Scholar
  32. Cooper TG (2005) Cytoplasmic droplets: the good, the bad or just confusing? Hum Reprod 20:9–11PubMedGoogle Scholar
  33. Cooper TG, Yeung C-H (2003) Acquisition of volume regulatory response of sperm upon maturation in the epididymis and the role of the cytoplasmic droplet. Microsc Res Techn 61:28–38Google Scholar
  34. Cooper NJ, McClean RV, Leigh CM, Breed WG (2001) Glycoconjugates on the surface of epididymal spermatozoa in a marsupial, the brushtail possum, Trichosurus vulpecula. Reproduction 122:165–176PubMedGoogle Scholar
  35. Curry MR, Watson PF (1995) Sperm structure and function. In: Grudzinskas JG, Yovich JL (eds) Gametes: the spermatozoon. Cambridge University Press, Cambridge, pp 45–69Google Scholar
  36. Dacheux JL, Dacheux F, Paquignon M (1989) Changes in sperm surface membrane and luminal protein fluid content during epididymal transit in the boar. Biol Reprod 40:635–651PubMedGoogle Scholar
  37. Desantis S, Ventriglia G, Zizza S, Nicassio M, Valentini L, Di Summa A, Lacalandra GM (2010) Lectin-binding sites on ejaculated stallion sperm during breeding and non-breeding periods. Theriogenology 73:1146–1153PubMedGoogle Scholar
  38. Diekman A (2003) Glycoconjugates in sperm function and gamete interactions: how much sugar does it take to sweet-talk the egg? Cell Mol Life Sci 60:298–308PubMedGoogle Scholar
  39. Dun MD, Smith ND, Baker MA, Lin M, Aitken RJ, Nixon B (2011) The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. J Biol Chem 286:36875–36887PubMedGoogle Scholar
  40. Ekhlasi-Hundrieser M, Sinowatz F, De Wilke IG, Waberski D, Töpfer-Petersen E (2002) Expression of spermadhesin genes in porcine male and female reproductive tracts. Mol Reprod Dev 61:32–41PubMedGoogle Scholar
  41. Evans RW, Weaver DE, Clegg ED (1980) Diacyl, alkenyl, and alkyl ether phospholipids in ejaculated, in utero-, and in vitro-incubated porcine spermatozoa. J Lipid Res 21:223–228PubMedGoogle Scholar
  42. Fàbrega A, Puigmule M, Dacheux J-L, Bonet S, Pinart E (2011a) Glycocalyx characterization and glycoprotein expression of sus domesticus epididymal sperm surface samples. Reprod Fert Develop (published online, (
  43. Fàbrega A, Guyonnet B, Dacheux J-L, Gatti J-L, Puigmule M, Bonet S, Pinart E (2011b) Expression, immunolocalization and processing of fertilins ADAM-1 and ADAM-2 in the boar (sus domesticus) spermatozoa during epididymal maturation. Reprod Biol Endocrin 9:96–109Google Scholar
  44. Fazeli A, Hage WJ, Cheng FP, Voorhout WF, Marks A, Bevers MM, Colenbrander B (1997) Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro. Biol Reprod 56:430–438PubMedGoogle Scholar
  45. Flesch FM, Gadella BM (2000) Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim biophys acta (BBA)—reviews on. Biomembranes 1469:197–235Google Scholar
  46. Frenette G, Lessard C, Madore E, Fortier MA, Sullivan R (2003) Aldose reductase and macrophage migration inhibitory factor are associated with epididymosomes and spermatozoa in the bovine epididymis. Biol Reprod 69:1586–1592PubMedGoogle Scholar
  47. Gadella BM, Tsai P-S, Boerke A, Brewis IA (2008) Sperm head membrane reorganisation during capacitation. Int J Dev Biol 52:473–480PubMedGoogle Scholar
  48. Gadella BM, Lopes-Cardoso M, van Golde LM, Colenbrander B, Gadella TW Jr (1995) Glycolipid migration from the apical to the equatorial subdomains of the sperm head plasma membrane precedes the acrosome reaction. Evidence for a primary capacitation event on boar spermatozoa. J Cell Sci 108:935–946PubMedGoogle Scholar
  49. Gatti J-L, Druart X, Guerin Y, Dacheux F, Dacheux J-L (1999) A 105- to 94-kilodalton protein in the epididymal fluids of domestic mammals is angiotensin I-converting enzyme (ACE); evidence that sperm are the source of this ACE. Biol Reprod 60:937–945PubMedGoogle Scholar
  50. Geussova G, Kalab P, Peknicova J (2002) Valosine containing protein is a substrate of cAMP—activated boar sperm tyrosine kinase. Mol Reprod Dev 63:366–375PubMedGoogle Scholar
  51. Gitlits V, Toh B, Loveland K, Sentry J (2000) The glycolytic enzyme enolase is present in sperm tail and displays nucleotide-dependent association with microtubules. Eur J Cell Biol 79:104–111PubMedGoogle Scholar
  52. Gonzalez-Urdiales R, Tejerina F, Domínguez JC, Alegre B, Ferreras A, Pelaez J, Bernal S, Cárdenas S (2006) Técnicas de análisis rutinario de la calidad espermática: motilidad, vitalidad, concentración, resistencia osmótica y morfología espermática. In Manual de Técnicas de Reproducción Asistida en Porcino, pp 19–38Google Scholar
  53. Gupta GS (2005) Sperm maturation in epididymis. In: Proteomics of spermatogenesis. Springer, New York, pp 811–837Google Scholar
  54. Haden NP, Hickox JR, Scott Whisnant C, Hardy DM (2000) Systematic characterization of sperm-specific membrane proteins in swine. Biol Reprod 63:1839–1847Google Scholar
  55. Hammerstedt RH, Hay SR, Amann RP (1982) Modification of ram sperm membranes during epididymal transit. Biol Reprod 27:745–754PubMedGoogle Scholar
  56. Harayama H, Watanabe S, Masuda H, Kanan Y, Miyake M, Kato S (1998) Lectin-binding characeristics of extracts from epididymal boar spermatozoa. J Reprod Dev 44:21–27Google Scholar
  57. Harayama H, Miyake M, Kato S (1999) Immunolocalization of anti-agglutinin for spermatozoa in boars. Mol Reprod Dev 52:269–276PubMedGoogle Scholar
  58. Hemachand T, Shaha C (2003) Functional role of sperm surface glutathione S-transferases and extracellular glutathione in the haploid spermatozoa under oxidative stress. FEBS Lett 538:14–18PubMedGoogle Scholar
  59. Holt WV, Hernandez M, Warrell L, Satake N (2010) The long and the short of sperm selection in vitro and in vivo: swim-up techniques select for the longer and faster swimming mammalian sperm. J Evol Biol 23:598–608PubMedGoogle Scholar
  60. Jiménez I, González-Márquez H, Ortiz R, Betancourt M, Herrera J, Fierro R (2002) Expression of lectin receptors on the membrane surface of sperm of fertile and subfertile boars by flow cytometry. Arch Androl 48:159–166PubMedGoogle Scholar
  61. Jiménez I, González-Márquez H, Ortiz R, Herrera JA, García A, Betancourt M, Fierro R (2003) Changes in the distribution of lectin receptors during capacitation and acrosome reaction in boar spermatozoa. Theriogenology 59:1171–1180PubMedGoogle Scholar
  62. Jonáková V, Manásková P, Kraus M, Liberda J, Tichá M (2000) Sperm surface proteins in mammalian fertilization. Mol Reprod Dev 56:275–277PubMedGoogle Scholar
  63. Jones R, James PS, Howes L, Bruckbauer A, Klenerman D (2007) Supramolecular organization of the sperm plasma membrane during maturation and capacitation. Asian J Androl 9:438–444PubMedGoogle Scholar
  64. Jones R, James PS, Oxley D, Coadwell J, Suzuki-Toyota F, Howes EA (2008) The equatorial subsegment in mamamlian spermatozoa is enriched in tyrosine phosphorylated proteins. Biol Reprod 79:421–431PubMedGoogle Scholar
  65. Jury JA, Frayne J, Hall L (1997) The human fertilin alpha gene is non-functional: implications for its proposed role in fertilization. Biochem J 321:577–581PubMedGoogle Scholar
  66. Kallajoki M, Malmi R, Virtanen I, Suominen J (1985) Glycoconjugates of human sperm surface. A study with fluorescent lectin conjugates and lens culinaris agglutinin affinity chromatography. Cell Biol Int Rep 9:151–164PubMedGoogle Scholar
  67. Kim E, Lee JW, Baek DC, Lee SR, Kim MS, Kim SH, Kim CS, Ryoo Z-Y, Kang HS, Chang KT (2010) Processing and subcellular localization of ADAM2 in the Macaca fascicularis testis and sperm. Anim Reprod Sci 117:155–159PubMedGoogle Scholar
  68. Kim E, Yamashita M, Nakanishi T, Park KE, Kimura M, Kashiwabara SI, Baba T (2006) Mouse sperm lacking ADAM1b/ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J Biol Chem 281:5634–5639PubMedGoogle Scholar
  69. Kirchhoff C, Hale G (1996) Cell-to-cell transfer of glycosylphosphatidylinositol-anchored membrane proteins during sperm maturation. Mol Hum Reprod 2:177–184PubMedGoogle Scholar
  70. Kuno M, Yonezawa N, Amari S, Hayashi M, Ono Y, Kiss L, Sonohara K, Nakano M (2000) The presence of a glycosyl phosphatidylinositol-anchored α-mannosidase in boar sperm. IUBMB Life 49:485–489PubMedGoogle Scholar
  71. Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674PubMedGoogle Scholar
  72. Liu HW, Wang JJ, Chao CF, Muller C (1991) Identification of two maturation-related, wheat-germ-lectin-binding proteins on the surface of mouse sperm. Acta Anat (Basel) 142:165–170Google Scholar
  73. López ML, Grez P, Gribbel I, Bustos-Obregón E (1989) Cytochemical and ultrastructural characteristics of the stallion epididymis (Equus caballus). J Submicrosc Cytol Pathol 21:103–120PubMedGoogle Scholar
  74. Magargee SF, Kunze E, Hammerstedt RH (1988) Changes in lectin-binding features of ram sperm surfaces associated with epididymal maturation and ejaculation. Biol Reprod 38:667–685PubMedGoogle Scholar
  75. Manásková P, Peknicová J, Elzeinová F, Tichá M, Jonáková V (2007) Origin, localization and binding abilities of boar DQH sperm surface protein tested by specific monoclonal antibodies. J Reprod Immun 74:103–113Google Scholar
  76. Mann T, Lutwak-Mann TC (1982) Male reproductive function and semen. Andrologia 14:76Google Scholar
  77. Martin RS (1982) Reproducción e inseminación artificial porcina. Aedos, BarcelonaGoogle Scholar
  78. McLaughlin EA, Frayne J, Barker HL, Jury JA, Jones R, Ford WC, Hall L (1997) Cloning and sequence analysis of rat fertilin alpha and beta-developmental expression, processing and immunolocalization. Mol Hum Reprod 3:801–809PubMedGoogle Scholar
  79. Mori E, Kashiwabara S, Baba T, Inagaki Y, Mori T (1995) Amino acid sequences of porcine Sp38 and proacrosin required for binding to the zona pellucida. Dev Biol 168:575–583PubMedGoogle Scholar
  80. Navaneetham D, Sivashanmugam P, Rajalakshmi M (1996) Changes in binding of lectins to epididymal, ejaculated, and capacitated spermatozoa of the rhesus monkey. Anat Rec 245:500–508PubMedGoogle Scholar
  81. Nicolson GL, Usui N, Yanagimachi R, Yanagimachi H, Smith JR (1977) Lectin-binding sites on the plasma membranes of rabbit spermatozoa: changes in surface receptors during epididymal maturation and after ejaculation. J Cell Biol 74:950–962PubMedGoogle Scholar
  82. Nikolopoulou M, Soucek DA, Vary JC (1985) Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochim Biophys Acta 815:486–498PubMedGoogle Scholar
  83. Nimtz M, Grabenhorst E, Conradt HS, Sanz L, Calvete J (1999) Structural characterization of the oligosaccharide chains of native and crystallized boar seminal plasma spermadhesin PSP-I and PSP-II glycoforms. Eur J Biochem 265:703–718PubMedGoogle Scholar
  84. Okamura N, Dacheux F, Venien A, Onoe S, Huet JC, Dacheux JL (1992) Localization of a maturation-dependent epididymal sperm surface antigen recognized by a monoclonal antibody raised against a 135-kilodalton protein in porcine epididymal fluid. Biol Reprod 47:1040–1052PubMedGoogle Scholar
  85. Overstreet JW, Lin Y, Yudin AI, Meyers SA, Primakoff P, Myles DG, Katz DF, Vandevoort CA (1995) Location of the PH-20 protein on acrosome-intact and acrosome-reacted spermatozoa of cynomolgus macaques. Biol Reprod 52:105–114PubMedGoogle Scholar
  86. Parks JE, Lynch DV (1992) Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 29:255–266PubMedGoogle Scholar
  87. Pĕknicová J, Kubátová A, Sulimenko V, Dráberová E, Viklický V, Hozák P, Dráber P (2001) Differential subcellular distribution of tubulin epitopes in boar spermatozoa: recognition of class III β-tubulin epitope in sperm tail. Biol Reprod 65:672–679PubMedGoogle Scholar
  88. Pelaez J, Long JA (2007) Characterizing the glycocalyx of poultry spermatozoa: I. Identification and distribution of carbohydrate residues using flow cytometry and epifluorescence microscopy. J Androl 28:342–352PubMedGoogle Scholar
  89. Peterson R, Chaudhry P, Tibbs B (1989) Calcium-binding proteins of boar spermatozoan plasma membranes: identification and partial characterization. Gamete Res 23:49–60PubMedGoogle Scholar
  90. Petrunkina AM, Harrison RAP, Töpfer-Petersen E (2000) Only low levels of spermadhesin AWN are detectable on the surface of live ejaculated boar spermatozoa. Reprod Fert Develop 12:361–371Google Scholar
  91. Petrunkina AM, Gehlhaar R, Drommer W, Waberski D, Töpfer-Petersen E (2001) Selective sperm binding to pig oviductal epithelium in vitro. Reproduction 121:889–896PubMedGoogle Scholar
  92. Petrunkina AM, Lakamp A, Gentzel M, Ekhlasi-Hundrieser M, Töpfer-Petersen E (2003) Fate of lactadherin P47 during post-testicular maturation and capacitation of boar spermatozoa. Reproduction 125:377–387PubMedGoogle Scholar
  93. Petruszak JA, Nehme CL, Bartles JR (1991) Endoproteolytic cleavage in the extracellular domain of the integral plasma membrane protein CE9 precedes its redistribution from the posterior to the anterior tail of the rat spermatozoon during epididymal maturation [published erratum appears in J Cell Biol 1991 Nov; 115(3): following 880]. J Cell Biol 114:917–927PubMedGoogle Scholar
  94. Phelps BM, Koppel DE, Primakoff P, Myles DG (1990) Evidence that proteolysis of the surface is an initial step in the mechanism of formation of sperm cell surface domains. J Cell Biol 111:1839–1847PubMedGoogle Scholar
  95. Primakoff P, Hyatt H, Myles DG (1985) A role for the migrating sperm surface antigen PH-20 in guinea pig sperm binding to the egg zona pellucida. J Cell Biol 101:2239–2244PubMedGoogle Scholar
  96. Pruneda A, Pinart E, Bonet S, Yeung C-H, Cooper T (2006) Study of the polyol pathway in the porcine epididymis. Mol Reprod Dev 73:859–865PubMedGoogle Scholar
  97. Pruneda A, Pinart E, Briz M, Sancho S, García-Gil N, Badia E, Kádár E, Bassols J, Bussalleu E, Yeste M, Bonet S (2005) Effects of a high semen-collection frequency on the quality of sperm from ejaculates and from six epididymal regions in boars. Theriogenology 63:2219–2232PubMedGoogle Scholar
  98. Puigmulé M, Fàbrega A, Yeste M, Bonet S, Pinart E (2011) Study of the proacrosin/acrosin system in epididymal, ejaculated and in vitro capacitated boar spermatozoa. Reprod Fert Develop 23:837–845Google Scholar
  99. Puri P, Myers K, Kline D, Vijayaraghavan S (2008) Proteomic analysis of bovine sperm YWHA binding partners identify proteins involved in signaling and metabolism. Biol Reprod 79:1183–1191PubMedGoogle Scholar
  100. Rao DS, Chang JC, Kumar PD, Mizukami I, Smithson GM, Bradley SV, Parlow AF, Ross TS (2001) Huntingtin interacting protein 1 is a clathrin coat binding protein required for differentiation of late spermatogenic progenitors. Mol Cell Biol 21:7796–7806PubMedGoogle Scholar
  101. Sancho S, Casas I, Ekwall H, Saravia F, Rodriguez-Martinez H, Rodriguez-Gil JE, Flores E, Pinart E, Briz M, Garcia-Gil N, Bassols J, Pruneda A, Bussalleu E, Yeste M, Bonet S (2007) Effects of cryopreservation on semen quality and the expression of sperm membrane hexose transporters in the spermatozoa of Iberian pigs. Reproduction 134:111–121PubMedGoogle Scholar
  102. Sanz L, Calvete JJ, Mann K, Schöpfer W, Schmid ER, Töpfer-Petersen E (1991) The amino acid sequence of AQN-3, a carbohydrate-binding protein isolated from boar sperm location of disulphide bridges. FEBS Lett 291:33–36PubMedGoogle Scholar
  103. Schroter S, Osterhoff C, McArdle W, Ivell R (1999) The glycocalyx of the sperm surface. Hum Reprod Update 5:302–313PubMedGoogle Scholar
  104. Shetty J, Wolkowicz MJ, Digilio LC, Klotz KL, Jayes FL, Diekman AB, Westbrook VA, Farris EM, Hao Z, Coonrod SA, Flickinger CJ, Herr JC (2003) SAMP14, a novel acrosomal membrane-associated, glycosylphosphatidylinositol-anchored member of the Ly-6/urokinase-type plasminogen activator receptor superfamily with a role in sperm-egg interaction. J Biol Chem 278:30506–30515PubMedGoogle Scholar
  105. Simpson AM, Swan MA, White IG (1987) Susceptibility of epididymal boar sperm to cold shock and protective action of phosphatidylcholine. Gamete Res 17:355–373PubMedGoogle Scholar
  106. Spinaci M, Volpe S, Bernardini C, De Ambrogi M, Tamanini C, Giovanna Galeati ES (2005) Immunolocalization of heat shock protein 70 (Hsp 70) in boar spermatozoa and its role during fertilization. Mol Reprod Dev 72:534–541Google Scholar
  107. Spinaci M, Volpe S, Bernardini C, de Ambrogi M, Tamanini C, Seren E, Galeati G (2006) Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa. J Androl 27:899–907PubMedGoogle Scholar
  108. Srivastav A (2000) Maturation-dependent glycoproteins containing both N- and O-linked oligosaccharides in epididymal sperm plasma membrane of rhesus monkeys (Macaca mulatta). J Reprod Fertil 119:241–252PubMedGoogle Scholar
  109. Syntin P, Dacheux F, Druart X, Gatti JL, Okamura N, Dacheux JL (1996) Characterization and identification of proteins secreted in the various regions of the adult boar epididymis. Biol Reprod 55:956–974PubMedGoogle Scholar
  110. Taitzoglou IA, Kokoli AN, Killian GJ (2007) Modifications of surface carbohydrates on bovine spermatozoa mediated by oviductal fluid: a flow cytometric study using lectins. Int J Androl 30:108–114Google Scholar
  111. Thaler CD, Cardullo RA (1995) The mammalian sperm surface: molecular and cellular aspects. In: Grudzinskas JG, Yovich JL (eds) Gametes: the spermatozoon. Cambridge University Press, Cambridge, pp 20–44Google Scholar
  112. Töpfer-Petersen E (1999) Carbohydrate-based interactions on the route of a spermatozoon to fertilization. Hum Reprod Update 5:314–329PubMedGoogle Scholar
  113. Töpfer-Petersen E, Ekhlasi-Hundrieser M, Tsolova M (2008) Glycobiology of fertilization in the pig. Int J Dev Biol 52:717–736PubMedGoogle Scholar
  114. Tulsiani DR, Skudlarek MD, Holland MK, Orgebin-Crist MC (1993) Glycosylation of rat sperm plasma membrane during epididymal maturation. Biol Reprod 48:417–428PubMedGoogle Scholar
  115. Van Gestel RA, Brewis IA, Ashton PR, Brouwers JF, Gadella BM (2007) Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte. Mol Hum Reprod 13:445–454PubMedGoogle Scholar
  116. Waberski D, Meding S, Dirksen G, Weitze KF, Leiding C, Hahn R (1994) Fertility of long-term-stored boar semen: influence of extender (Androhep and Kiev), storage time and plasma droplets in the semen. Anim Reprod Sci 36:145–151Google Scholar
  117. Wagner A, Ekhlasi-Hundrieser M, Hettel C, Petrunkina A, Waberski D, Nimtz M, Töpfer-Petersen E (2002) Carbohydrate-based interactions of oviductal sperm reservoir formation-studies in the pig. Mol Reprod Dev 61:249–257PubMedGoogle Scholar
  118. Walker JM, Gravel P, Golaz O (1996) Identification of glycoproteins on nitrocellulose membranes using lectin blotting. In: Walker JM (ed) The protein protocols handbook. Humana Press, England, pp 603–617Google Scholar
  119. Waters SI, White JM (1997) Biochemical and molecular characterization of bovine fertilin alpha and beta (ADAM 1 and ADAM 2): a candidate sperm-egg binding/fusion complex. Biol Reprod 56:1245–1254PubMedGoogle Scholar
  120. White IG (1993) Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reprod Fert Develop 5:639–658Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Biotechnology of Animal and Human Reproduction (Technosperm), Department of Biology, Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain

Personalised recommendations