Skip to main content

Principles of Electromigration Techniques

  • Chapter
  • First Online:

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 105))

Abstract

Electromigration techniques provide the separation of analyzed sample components owing to external voltage generating electrokinetic phenomena—electrophoresis and electroosmosis. Taking into account the relatively large number of parameters dealt with during electrophoretic analyses, it is essential to know their influence on the achieved separation of analytes. In this chapter the theoretical and practical aspects of a resolution optimization, as well as the effect of different separation parameters on the migration behavior are described. These, among others, include migration time, efficiency, selectivity, and resolution. The influence of electrods polarization, applied voltage, temperature, capillary, background electrolyte, and various additives on the separation is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Blanco, J. Coello, H. Iturriaga, S. Maspochi, M.A. Romero, Analytical control of a pharmaceutical formulation of sodium picosulfate by capillary zone electrophoresis. J. Chromatogr. B 751, 29–36 (2001)

    Article  Google Scholar 

  2. K.D. Altria, Determination of drug-related impurities by capillary electrophoresis. J. Chromatogr. A 735, 43–56 (1996)

    Article  Google Scholar 

  3. W.C. Sung, S.H. Chen, Recent advances in pharmacokinetic applications of capillary electrophoresis. Electrophoresis 22, 4244–4248 (2001)

    Article  Google Scholar 

  4. W. Buchberger, M. Ferdig, R. Sommer, T.D.T. Vo, Trace analysis of rapamycin in human blood by micellar electrokinetic chromatography. Anal. Bioanal. Chem. 380, 68–71 (2004)

    Article  Google Scholar 

  5. H. Nishi, Enantiomer separation of basic drugs by capillary electrophoresis using ionic and neutral polysaccharides as chiral selectors. J. Chromatogr. A 735, 345–351 (1996)

    Article  Google Scholar 

  6. P.G. Righetti, C. Gelfi, M. Conti, Current trends in capillary isoelectric focusing of proteins. J. Chromatogr. B 699, 91–104 (1997)

    Article  Google Scholar 

  7. G. Vanhoenacker, T.D. van den Bosch, G. Rozing, P. Sandra, Recent applications of capillary electrochromatography. Electrophoresis 22, 1103–4064 (2001)

    Google Scholar 

  8. E. Jellum, H. Dollekamp, C. Blessum, Capillary electrophoresis for clinical problem solving: Analysis of urinary diagnostic metabolites and serum proteins. J. Chromatogr. B 683, 55–65 (1996)

    Article  Google Scholar 

  9. F. Kvasnicka, Application of isotachophoresis in food analysis. Electrophoresis 21, 2780–2787 (2000)

    Article  Google Scholar 

  10. G.B. Divall, The application of electrophoretic techniques in the field of criminology. Electrophoresis 6, 249–258 (1985)

    Article  Google Scholar 

  11. J.P. Landers, Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, 3rd edn. (CRC Press, New York, 2008)

    Google Scholar 

  12. M.L. Marina, A. Rios, M. Varcalcel (eds.), Analysis and Detection by Capillary Electrophoresis (Elsevier, The Netherlands, 2005)

    Google Scholar 

  13. B. Chankvetadze, Capillary Electrophoresis in Chiral (Wiley, Chichester, 1997)

    Google Scholar 

  14. R.J. Hunter, Zeta Potential in Colloid Science: Principles and Applications (Academic, London, 1981)

    Google Scholar 

  15. O. Stern, The theory of the electrolytic double-layer. Z. Elektrochem. 30, 508–516 (1924)

    Google Scholar 

  16. M.V. Smoluchowski, Handbuch der Elektrizitat und des Magnetismus (Barth, Leipzig, 1921)

    Google Scholar 

  17. K.D. Altria, in Capillary Electrophoresis guidebook. Principles, Operation, and Applications, ed. by K.D. Altria. Methods in Molecular Biology, vol 52 (Humana Press, Totowa, 1996)

    Google Scholar 

  18. B.M. Michov, Ionic mobility parameter. Electrophoresis 6, 471–475 (1985)

    Article  Google Scholar 

  19. R. Wallingford, A. Ewing, Capillary electrophoresis. Adv. Chromatogr. 29, 1–67 (1989)

    Google Scholar 

  20. D.R. Baker, Capillary Electrophoresis Techniques in Analytical Chemistry (Wiley, New York, 1995)

    Google Scholar 

  21. C. Schwer, E. Kenndler, Capillary electrophoresis. Chromatographia 30, 546–554 (1990)

    Article  Google Scholar 

  22. X. Xuan, D. Sioton, D. Li, Thermal end effects on electroosmotic flow in a capillary. J. Heat Mass Tran. 47, 3145–3157 (2004)

    Article  MATH  Google Scholar 

  23. J.H. Knox, K.A. McCormack, Temperature effects in capillary electrophoresis 1 Internal capillary temperature and effect upon performance. Chromatographia 38, 207–214 (1994)

    Article  Google Scholar 

  24. S.F.Y. Li, Capillary electrophoresis—principles, practice and applications. J. Chromatogr. Libr. 52, 395 (1992)

    Google Scholar 

  25. S. Terabe, T. Yashima, N. Tanaka, M. Araki, Separation of oxygen isotopic benzoic acids by capillary zone electrophoresis based on isotope effects on the dissociation of the carboxyl group. Anal. Chem. 60, 1673–1677 (1988)

    Article  Google Scholar 

  26. B.M. Michov, Ionic mobility parameter. Electrophoresis 6, 471–475 (1985)

    Article  Google Scholar 

  27. A. Diress, C. Lucy, Electroosmotic flow reversal for determination of inorganic anions by capillary electrophoresis with methanol-water buffers. J. Chromatogr. A 1027, 185–191 (2004)

    Article  Google Scholar 

  28. J. Melanson, N. Baryla, C. Lucy, Dynamic capillary coatings for electroosmotic flow control in capillary electrophoresis. TRAC-Trends Anal. Chem. 20, 365–374 (2001)

    Article  Google Scholar 

  29. C.A. Lucy, A.M. MacDonald, M.D. Gulcev, Non-covalent capillary coatings for protein separations in capillary electrophoresis. J. Chromatogr. A 1184, 81–105 (2008)

    Article  Google Scholar 

  30. K.K.C. Yeung, C.A. Lucy, Improved resolution of inorganic anions in capillary electrophoresis by modification of the reversed electroosmotic flow and the anion mobility using mixed surfactants. J. Chromatogr. A 804, 319–325 (1998)

    Article  Google Scholar 

  31. A. Cifuentes, M.A. Rodriguez, F.J. Garcia-Montelongo, Separation of basic proteins in free solution capillary electrophoresis: Effect of additive, temperature and voltage. J. Chromatogr. A 742, 257–266 (1996)

    Article  Google Scholar 

  32. H. Kajiwara, Application of high-performance capillary electrophoresis to the analysis of conformation and interaction of metal-binding proteins. J. Chromatogr. A 559, 345–356 (1991)

    Article  Google Scholar 

  33. R. Brechtel, W. Hohmann, H. Rudiger, H. Watzing, Control of the electroosmotic flow by metal-salt-containing buffers. J. Chromatogr. A 716, 97–105 (1995)

    Article  Google Scholar 

  34. M. Mammen, J.D. Carbech, E.E. Simanek, G.M. Whitesides, Treating electrostatic shielding at the surface of silica as discrete siloxide center dot cation interactions. J. Am. Chem. Soc. 119, 3469–3476 (1997)

    Article  Google Scholar 

  35. S. Datta, A.T. Conlisk, H.F. Li, M. Yoda, Effect of divalent ions on electroosmotic flow in microchannels. Mech. Res. Commun. 36, 65–74 (2009)

    Article  MATH  Google Scholar 

  36. J.E. Dickens, J. Gorse, J.A. Everhart, M. Ryan, Dependence of electroosmotic flow in capillary electrophoresis on group I and II metal ions. J. Chromatogr. B 657, 401–407 (1994)

    Article  Google Scholar 

  37. B.J. Kirby, E.F. Hasselbrink Jr, Zeta potential of microfluidic substrates: 1 Theory, experimental techniques, and effects on separations. Electrophoresis 25, 187–202 (2004)

    Article  Google Scholar 

  38. T.F. Tadros, J. Lyklema, The electrical double layer on silica in the presence of bivalent counter-ions. Electroanal. Chem. Interfacial Electrochem. 22, 1–17 (1969)

    Article  Google Scholar 

  39. J. Muzikar, T. van de Goor, B. Gas, E. Kenndler, Determination of electroosmotic flow mobility with a pressure-mediated dual-ion technique for capillary electrophoresis with conductivity detection using organic solvents. J. Chromatogr. A 960, 199–208 (2002)

    Article  Google Scholar 

  40. S.R. Bean, G.L. Lookhart, J.A. Bietz, Acetonitrile as a buffer additive for free zone capillary electrophoresis separation and characterization of maize (Zea mays L) and sorghum (Sorghum bicolor Moench) storage proteins. J. Agric. Food Chem. 48, 318–327 (2000)

    Article  Google Scholar 

  41. Y. Shen, R.D. Smith, High-resolution capillary isoelectric focusing of proteins using highly hydrophilic-substituted cellulose-coated capillaries. J. Microbiol. 12, 135–141 (2000)

    Google Scholar 

  42. B. Verzola, C. Gelfi, P.G. Rightti, Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis II Effects of adsorbed, neutral polymers on quenching the interaction. J. Chromatogr. A 874, 293–303 (2000)

    Article  Google Scholar 

  43. H. Engelhardt, M.A. Cunat-Walter, Preparation and stability tests for polyacrylamide-coated capillaries for capillary electrophoresis. J. Chromatogr. 716, 27–33 (1995)

    Article  Google Scholar 

  44. E. Simon-Alfonso, M. Conti, C. Gelfi, P.G. Righetti, Sodium dodecyl sulfate capillary electrophoresis of proteins in entangled solutions of poly(vinyl alcohol). J. Chromatogr. A 689, 85–96 (1995)

    Article  Google Scholar 

  45. W.S. Law, J.H. Zhao, S.F. Li, On-line sample enrichment for the determination of proteins by capillary zone electrophoresis with poly(vinyl alcohol)-coated bubble cell capillaries. Electrophoresis 26, 3486–3494 (2005)

    Article  Google Scholar 

  46. N. Iki, E.S. Yeung, Non-bonded poly(ethylene oxide) polymer-coated column for protein separation by capillary electrophoresis. J. Chromatogr. A 731, 273–282 (1996)

    Article  Google Scholar 

  47. E.N. Fung, E.S. Yeung, High-speed DNA sequencing by using mixed poly(ethylene oxide) solutions in uncoated capillary columns. Anal. Chem. 67, 1913–1959 (1995)

    Article  Google Scholar 

  48. J. Preisler, E.S. Yeung, Characterization of nonbonded poly-(ethylene oxide) coatings for capillary electrophoresis via continuous monitoring of electroosmotic flow. Anal. Chem. 68, 2885–2889 (1996)

    Article  Google Scholar 

  49. M. Girog, D.W. Armstrong, Monitoring the migration behavior of living microorganisms in capillary electrophoresis using laser-induced fluorescence detection with a charge-coupled device imaging system. Electrophoresis 23, 2048–2056 (2002)

    Article  Google Scholar 

  50. E. Kłodzinska, H. Dahm, H. Rożycki, J. Szeliga, M. Jackowski, B. Buszewski, Rapid identification of Escherichia coli and Helicobacter pylori in biological samples by capillary electrophoresis. J. Sep. Sci. 29, 1180–1187 (2006)

    Article  Google Scholar 

  51. A. Cifuentes, H. Poppe, J.C. Kraak, E.B. Erim, Selectivity change in the separation of proteins and peptides by capillary electrophoresis using high-molecular-mass polyethyleneimin. J. Chromatogr. B 681, 21–27 (1996)

    Article  Google Scholar 

  52. M.S. Nutku, F.B.E. Berker, Polyethyleneimine-coated capillaries for the separation of DNA by capillary electrophoresis. Turk. J. Chem. 27, 9–14 (2003)

    Google Scholar 

  53. M. Spanila, J. Pazourek, J. Havel, Electroosmotic flow changes due to interactions of background electrolyte counter-ions with polyethyleneimine coating in capillary zone electrophoresis of proteins. J. Sep. Sci. 29, 2234–2240 (2006)

    Article  Google Scholar 

  54. S. Hjerten, High-performance electrophoresis: Elimination of electroendosmosis and solute adsorption. J. Chromatogr. 347, 191–198 (1985)

    Article  Google Scholar 

  55. K. Cobb, V. Dolnik, M. Novotny, Electrophoretic separations of proteins in capillaries with hydrolytically-stable surface structures. Anal. Chem. 62, 2478–2483 (1990)

    Article  Google Scholar 

  56. Z. Zhao, A. Malik, M.L. Lee, Adsorption on polymer-coated fused-silica capillary electrophoresis columns using selected protein and peptide standard. Anal. Chem. 65, 2747–2752 (1993)

    Article  Google Scholar 

  57. A. Cifuentes, M. De Frutos, J.C. Santos, J.C. Diez-Masa, Separation of basic proteins by capillary electrophoresis using cross-linked polyacrylamide-coated capillaries and cationic buffer additives. J. Chromatogr. A 655, 63–72 (1993)

    Article  Google Scholar 

  58. R.W. Chiu, J.C. Jimenez, C.A. Monnig, High molecular weight polyarginine as a capillary coating for separation of cationic proteins by capillary electrophoresis. Anal. Chim. Acta 307, 193–201 (1995)

    Article  Google Scholar 

  59. A. Cifuentes, P. Canalejas, J.C. Diez-Masa, Preparation of linear polyacrylamide-coated capillariesStudy of the polymerization process and its effect on capillary electrophoresis performance. J. Chromatogr. A 830, 423–438 (1999)

    Article  Google Scholar 

  60. M. Szumski, E. Kłodzinska, B. Buszewski, Separation of microorganisms using electromigration techniques. J. Chromatogr. A 1084, 186–193 (2005)

    Article  Google Scholar 

  61. M. Gilges, M.H. Kleemiss, G. Schomburg, Capillary zone electrophoresis separations of basic and acidic proteins using poly(vinyl alcohol) coatings in fused silica capillaries. Anal. Chem. 66, 2038–2046 (1994)

    Article  Google Scholar 

  62. N.L. Burns, J.M. van Alstine, J.M. Harris, Poly(ethylene glycol) grafted to quartz: analysis in terms of a site-dissociation model of electroosmotic fluid flow. Langmuir 11, 2768–2776 (1995)

    Article  Google Scholar 

  63. K. Srinivasan, C. Pohl, N. Avdalovic, Cross-linked polymer coatings for capillary electrophoresis and applications to analysis of basic proteins, acidic proteins and inorganic ions. Anal. Chem. 69, 2798–2805 (1997)

    Article  Google Scholar 

  64. J.K. Towns, E.E. Regnier, Polyethyleneimine—bonded phases in the separation of proteins by capillary electrophoresis. J. Chromatogr. 516, 69–78 (1990)

    Article  Google Scholar 

  65. J.T. Smith, El Rassi, Z Capillary zone electrophoresis of biological substances with fused silica capillaries having zero or constant electroosmotic flow. Electrophoresis 14, 396–406 (1993)

    Article  Google Scholar 

  66. M.A. Rodriguez-Delgado, F.J. Garcia-Montelongo, A. Cifuentes, Ultrafast sodium dodecyl sulfate micellar electrokinetic chromatography with very acidic running buffers. Anal. Chem. 74, 257–260 (2002)

    Article  Google Scholar 

  67. Y.J. Yao, S.F.Y. Li, Capillary zone electrophoresis of basic proteins with chitosan as a capillary modifier. J. Chromatogr. A 663, 97–104 (1994)

    Article  Google Scholar 

  68. X. Huang, Q. Wanga, B. Huang, Preparation and evaluation of stable coating for capillary electrophoresis using coupled chitosan as coated modifier. Talanta 69, 463–468 (2006)

    Article  Google Scholar 

  69. S. Hjerten, K. Kubo, A new type of pH- and detergent-stable coating for elimination of electroendosmosis and adsorption in (capillary) electrophoresis. Electrophoresis 14, 390–395 (1993)

    Article  Google Scholar 

  70. Y. Mechref, Z.E. Rassi, Fused-silica capillaries with surface-bound dextran layer crosslinked with diepoxypolyethylene glycol for capillary electrophoresis of biological substances at reduced electroosmotic flow. Electrophoresis 16, 617–624 (1995)

    Article  Google Scholar 

  71. W.C. Yang, M. Macka, P.R. Haddad, Biopolymer-coated fused silica capillaries for high magnitude cathodic or anodic electro-osmotic flows in capillary electrophoresis. Chromatograp 57, 187–193 (2003)

    Article  Google Scholar 

  72. S. Hjertén, K. Elenbring, F. Kilar, J.L. Liao, A.J.C. Chen, C.J. Siebert, M.D. Zhu, Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus. J. Chromatogr. A 403, 47–61 (1987)

    Article  Google Scholar 

  73. M.H.A. Busch, J.C. Kraak, H. Poppe, Cellulose acetate-coated fused-silica capillaries for the separation of proteins by capillary zone electrophoresis. J. Chromatogr. A 695, 287–296 (1995)

    Article  Google Scholar 

  74. C. Giovannoli, L. Anfossi, C. Tozzi, G. Giraudi, A. Vanni, DNA separation by capillary electrophoresis with hydrophilic substituted celluloses as coating and sieving polymers Application to the analysis of genetically modified meals. J. Sep. Sci. 27, 1551–1556 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewelina Dziubakiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dziubakiewicz, E., Buszewski, B. (2013). Principles of Electromigration Techniques. In: Buszewski, B., Dziubakiewicz, E., Szumski, M. (eds) Electromigration Techniques. Springer Series in Chemical Physics, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35043-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35043-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35042-9

  • Online ISBN: 978-3-642-35043-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics