Skip to main content

Applications of Electromigration Techniques: Electromigration Techniques in Detection of Microorganisms

  • Chapter
  • First Online:
Electromigration Techniques

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 105))

Abstract

The detection and identification of microbes is a challenge and an important aspect in many fields of our lives from medicine to bioterrorism defense. However, the analysis of such complex molecules brings a lot of questions mainly about their behavior. Bacteria are biocolloid, whose surface charge originates from the ionization of carboxyl, phosphate, or amino groups and the adsorption of ions from solution. Consequently, the charged cell wall groups determine the spontaneous formation of the electrical double layer. In this chapter application of electromigration techniques for microorganism’s identification and separation are described. This approach represents the possibility to apply electromigration techniques in medical diagnosis, detection of food contamination, and sterility testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Kilarski, Strukturalne podstawy biologii komórki (PWN, Warsaw, 2005)

    Google Scholar 

  2. G.M. Fuller, D. Shields, Podstawy molekularne biologii komórki: aspekty medyczne. PZWL (2005)

    Google Scholar 

  3. E. Dziubakiewicz, E. Kłodzińska, B. Buszewski, Elektryczne mikroby. Analityka 2, 11–14 (2009)

    Google Scholar 

  4. S. Hjertén, K. Elenbring, F. Kilar, J.L. Liao, A.J. Chen, C.J. Siebert, M.D. Zhu, Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus. J. Chromatogr. 403, 47–61 (1987)

    Article  Google Scholar 

  5. R.C. Ebersole, R.M. McCormick, Separation and isolation of viable bacteria by capillary zone electrophoresis. Biotechnology 11, 1278–1282 (1993)

    Google Scholar 

  6. B. Buszewski, M. Szumski, E. Klodzinska, H. Dahm, Separation of bacteria by capillary electrophoresis. J. Sep. Sci. 26, 1045–1049 (2003)

    Article  Google Scholar 

  7. M. Szumski, E. Kłodzińska, B. Buszewski, Separation of microorganisms using electromigration techniques. J. Chromatogr. A 1084, 186–193 (2005)

    Article  Google Scholar 

  8. D.W. Armstrong, J.M. Schneiderheinze, Rapid identification of the bacterial pathogens responsible for urinary tract infections using direct injection CE. Anal. Chem. 72, 4474–4476 (2000)

    Article  Google Scholar 

  9. E. Kłodzińska, H. Dahm, H. Rożycki, J. Szeliga, M. Jackowski, B. Buszewski, Rapid identification of Escherichia coli and Helicobacter pylori in biological samples by capillary zone electrophoresis. J. Sep. Sci. 29, 1180–1187 (2006)

    Article  Google Scholar 

  10. P. Gao, G. Xu, X. Shi, K. Yuan, J. Tian, Rapid detection of staphylococcus aureus by a combination of monoclonal antibody-coated latex and capillary electrophoresis. Electrophoresis 27, 1784–1789 (2006)

    Article  Google Scholar 

  11. E. Kłodzińska, M. Szumski, K. Hrynkiewicz, E. Dziubakiewicz, M. Jackowski, B. Buszewski, Differentiation of Staphylococcus aureus strains by CE, zeta potential and coagulase gene polymorphism. Electrophoresis 30, 3086–3091 (2009)

    Article  Google Scholar 

  12. B. Buszewski, E. Kłodzińska, H. Dahm, H. Różycki, J. Szeliga, M. Jackowski, Rapid identification of Helicobacter pylori by capillary electrophoresis: an overview. Biomed. Chromatogr. 21, 116–122 (2007)

    Article  Google Scholar 

  13. M. Girod, D.W. Armstrong, Monitoring the migration behavior of living microorganisms in capillary electrophoresis using laser-induced fluorescence detection with a charge-coupled device imaging system. Electrophoresis 23, 2048–2056 (2002)

    Article  Google Scholar 

  14. J. Zheng, E.S. Yeung, Mechanism of microbial aggregation during capillary electrophoresis. Anal. Chem. 75, 818–824 (2003)

    Article  Google Scholar 

  15. O. Lim, W. Suntornsuk, L. Suntornsuk, Capillary zone electrophoresis for enumeration of Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus in yogurt. J. Chromatogr. B 877, 710–718 (2009)

    Article  Google Scholar 

  16. D.W. Armstrong, J.M. Schneiderheinze, J.P. Kullman, L. He, Rapid CE microbial assays for consumer products that contain active bacteria. FEMS Microbiol. Lett. 194, 33–37 (2001)

    Article  Google Scholar 

  17. T. Shintani, M. Torimura, H. Sato, H. Tao, T. Manabe, Rapid separation of microorganisms by quartz microchip capillary electrophoresis. Anal. Sci. 21, 57–60 (2005)

    Article  Google Scholar 

  18. P.C.H. Li, D.J. Harrison, Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal. Chem. 69, 1564–1568 (1997)

    Article  Google Scholar 

  19. A.T. Poortinga, R. Bosa, W. Nordea, H.J. Busscher, Electric double layer interactions in bacterial adhesion to surfaces. Surf. Sci. Rep. 47, 1–32 (2002)

    Article  Google Scholar 

  20. A. Pfetsch, T. Welsch, Determination of the electrophoretic mobility of bacteria and their separation by capillary zone electrophoresis Fresenius. J. Anal. Chem. 359, 198–201 (1997)

    Article  Google Scholar 

  21. D.W. Armstrong, G. Schulte, J.M. Schneiderheinze, D.J. Westenberg, Separating microbes in the manner of molecules 1. Capillary electrokinetic approaches. Anal. Chem. 71, 5465–5469 (1999)

    Article  Google Scholar 

  22. M. Torimura, S. Ito, K. Kano, T. Ikeda, Y. Esaka, T. Ueda, Surface characterization and on-line activity measurements of microorganisms by capillary zone electrophoresis. J. Chromatogr. B 721, 31–37 (1999)

    Article  Google Scholar 

  23. D.W. Armstrong, L. He, Determination of cell viability in single or mixed samples using capillary electrophoresis laser-induced fluorescence microfluidic systems. Anal. Chem. 73, 4551–4557 (2001)

    Article  Google Scholar 

  24. K. Yamada, M. Torimura, S. Kurata, Y. Kamagata, T. Kanagawa, K. Kano, T. Ikeda, T. Yokomaku, R. Kurane, Application of capillary electrophoresis to monitor populations of Cellulomonas cartae KYM-7 and Agrobacterium tumefaciens KYM-8 in mixed culture. Electrophoresis 22, 3413–3417 (2001)

    Article  Google Scholar 

  25. T. Shintani, K. Yamada, M. Torimura, Optimization of a rapid and sensitive identification system for salmonella enteritidis by capillary electrophoresis with laser-induced fluorescence. FEMS Microbiol. Lett. 210, 245–249 (2002)

    Article  Google Scholar 

  26. B.G. Moon, Y.-I. Lee, S.H. Kang, Y. Kim, Capillary electrophoresis of microbes. Bull. Korean Chem. Soc. 24, 81–85 (2003)

    Article  Google Scholar 

  27. B. Palenzuela, B.M. Simonet, R.M. Garcia, A. Ríos, M. Valcarcel, Monitoring of bacterial contamination in food samples using capillary zone electrophoresis. Anal. Chem. 76, 3012–3017 (2004)

    Article  Google Scholar 

  28. M. Horka, F. Ruzicka, J. Horky, V. Hola, K. Slais, Capillary isoelectric focusing and fluorometric detection of proteins and microorganisms dynamically modified by poly(ethylene glycol) pyrenebutanoate. Anal. Chem. 78, 8438–8444 (2006)

    Article  Google Scholar 

  29. M. Horka, F. Ruzicka, J. Horky, V. Hola, K. Slais, Capillary isoelectric focusing of proteins and microorganisms in dynamically modified fused silica with UV detection. J. Chromatogr. B 841, 152–159 (2006)

    Article  Google Scholar 

  30. M.A. Rodriguez, A.W. Lantz, D.W. Armstrong, Capillary electrophoretic method for the detection of bacterial contamination. Anal. Chem. 78, 4759–4767 (2006)

    Article  Google Scholar 

  31. M. Horka, O. Kubicek, F. Ruzicka, V. Hola, I. Malinovska, K. Slais, Capillary isoelectric focusing of native and inactivated microorganisms. J. Chromatogr. A 1155, 164–171 (2007)

    Article  Google Scholar 

  32. W. Lantz, Y. Bao, D.W. Armstrong, Single-cell detection: test of microbial contamination using capillary electrophoresis. Anal. Chem. 79, 1720–1724 (2007)

    Article  Google Scholar 

  33. M. Horká, J. Horký, A. Kubesova, K. Mazanec, H. Matouskova, K. Lais, Electromigration techniques: a fast and economical tool for differentiation of similar strains of microorganisms. Analyst 135, 1636–1644 (2010)

    Article  ADS  Google Scholar 

  34. M.Y. Tong, C. Jiang, D.W. Armstrong, Fast detection of Candida albicans and/or bacteria in blood plasma by sample-self-focusin using capillary electrophoresis-laser-induced fluorescence. J. Pharm. Biomed. Anal. 53, 75–80 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogusław Buszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dziubakiewicz, E., Buszewski, B. (2013). Applications of Electromigration Techniques: Electromigration Techniques in Detection of Microorganisms. In: Buszewski, B., Dziubakiewicz, E., Szumski, M. (eds) Electromigration Techniques. Springer Series in Chemical Physics, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35043-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35043-6_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35042-9

  • Online ISBN: 978-3-642-35043-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics