Skip to main content

Methods of Analyte Concentration in a Capillary

  • Chapter
  • First Online:
Electromigration Techniques

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 105))

Abstract

Online sample concentration techniques in capillary electrophoresis separations have rapidly grown in popularity over the past few years. During the concentration process, diluted analytes in long injected sample are concentrated into a short zone, then the analytes are separated and detected. A large number of contributions have been published on this subject proposing many names for procedures utilizing the same concentration principles. This chapter brings a unified view on concentration, describes the basic principles utilized, and shows a list of recognized current operational procedures. Several online concentration methods based on velocity gradient techniques are described, in which the electrophoretic velocities of the analyte molecules are manipulated by field amplification, sweeping and isotachophoretic migration, resulting in the online concentration of the analyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Jorgenson, K.D. Lukacs, Zone electrophoresis in open-tubular glass capillaries. Anal. Chem. 53, 1298–1302 (1981)

    Article  Google Scholar 

  2. J.W. Jorgenson, K.D. Lukacs, High-resolution separations based on electrophoresis and electroosmosis. J. Chromatogr. 218, 209–216 (1981)

    Article  Google Scholar 

  3. R.A. Wallingford, A.G. Ewing, Capillary electrophoresis. Adv. Chromatogr. 29, 1–76 (1989)

    Google Scholar 

  4. A.G. Ewing, R.A. Wallingford, T.M. Olefirowicz, Capillary electrophoresis. Anal. Chem. 61, 292A–303A (1989)

    Google Scholar 

  5. B.L. Karger, A.S. Cohen, A. Guttman, High-performance capillary electrophoresis in the biological sciences. J. Chromatogr. B 492, 585–614 (1989)

    Article  Google Scholar 

  6. M.J. Gordon, X. Huang, S.L. Pentoney, R.N. Zare, Capillary electrophoresis. Science 241, 224–228 (1988)

    Article  ADS  Google Scholar 

  7. E.S. Yeung, Indirect detection methods: looking for what is not there. Acc. Chem. Res. 22, 125–130 (1989)

    Article  Google Scholar 

  8. P.D. Grossman, J.C. Colburn, H.H. Lauer, R.G. Nielsen, R. Riggin, G.S. Sittampalam, E.C. Rickard, Application of free-solution capillary electrophoresis to the analytical scale separation of proteins and peptides. Anal. Chem. 61, 1186–1194 (1989)

    Article  Google Scholar 

  9. J. Snopek, I. Jelinek, E. Smolkova-Keulemansova, Micellar, Inclusion and metal–complex enantioselective pseudophases in high-performance electromigration methods. J. Chromatogr. A 452, 571–590 (1988)

    Article  Google Scholar 

  10. N.A. Guzman, L. Hernandez, B.G. Hoebel, Capillary electrophoresis: a new era in micro separations. BioPharm. 2, 22–37 (1989)

    Google Scholar 

  11. J.W. Jorgenson, K.D. Lukacs, Free-zone electrophoresis in glass capillaries. Clin. Chem. 27, 1551–1553 (1981)

    Google Scholar 

  12. J.W. Jorgenson, K.D. Lukacs, Microcolumn separations. J. Chromatogr. Libr. 30, 121 (1985)

    Article  Google Scholar 

  13. P. Mucha, P. Rekowski, A. Szyk, G. Kupryszewski, J. Barciszewski, Capillary electrophoresis: a new tool for biomolecule separation (Elektroforeza kapilarna: nowe narzedzie analizy biomolekuł). Postępy Biochem ii 43, 208–216 (1997)

    Google Scholar 

  14. A.T. Aranas, A.M. Guidote Jr, J.P. Quirino, Sweeping and new on-line sample preconcentration techniques in capillary electrophoresis. Anal. Bioanal. Chem. 394, 175–185 (2009)

    Article  Google Scholar 

  15. A. Mrass, E. Bald, Metody zatężania analitów w kapilarze w wysokosprawnej elektroforezie kapilarnej. Wiad. Chem. 55, 933–953 (2001)

    Google Scholar 

  16. M.C. Breadmore, Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips. Electrophoresis 28, 254–281 (2007)

    Article  Google Scholar 

  17. Z. Witkiewicz (ed.), Podstawy Chromatografii (WNT, Warsaw, 2005)

    Google Scholar 

  18. D.B. Craig, J.C.Y. Wong, N.J. Dovichi, Detection of Attomolar concentrations of alkaline phosphatase by capillary electrophoresis using laser-induced fluorescence detection. Anal. Chem. 68, 697–700 (1996)

    Article  Google Scholar 

  19. C.J. Smith, J. Grainger, D.G. Patterson Jr, Separation of polycyclic aromatic hydrocarbon metabolites by γ-cyclodextrin-modified micellar electrokinetic chromatography with laser-induced fluorescence detection. J. Chromatogr. A 803, 241–247 (1998)

    Article  Google Scholar 

  20. N.M. Djordjevic, M. Widder, R. Kuhn, Signal enhancement in capillary electrophoresis by using a sleeve cell arrangement for optical detection. J. High Res. Chromatogr. 20, 189–192 (1997)

    Article  Google Scholar 

  21. G. Ross, P. Kaltenbach, D. Heilger, High sensitivity is key to CE detection boost: with a new detection cell, sensitivity and linearity for CE are comparable to that of HPLC. Today’s Chem. Work 6, 31–36 (1997)

    Google Scholar 

  22. Technical Bulletin/Hewlett Packard (1997) 12–5965–5984E

    Google Scholar 

  23. Z. Witkiewicz, J. Hetper, Słownik Chromatografii i Elektroforezy (PWN, Warszawa, 2004)

    Google Scholar 

  24. M.C. Breadmore, J.R.E. Thabano, M. Davod, A.A. Kazarian, J.P. Quirino, R.M. Guijt, Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2006–2008). Electrophoresis 30, 230–248 (2009)

    Article  Google Scholar 

  25. R.L. Chien, D.S. Burgi, On-column sample concentration using field amplification in CZE. Anal. Chem. 64, 489A–496A (1992)

    Article  Google Scholar 

  26. J.P. Quirino, S. Terabe, Sample stacking of cationic and anionic analytes in capillary electrophoresis. J. Chromatogr. A 902, 119–135 (2000)

    Article  Google Scholar 

  27. P. Gebauer, W. Thormann, P. Bocek, Sample self-stacking in zone electrophoresis theoretical description of the zone electrophoretic separation of minor compounds in the presence of bulk amounts of a sample component with high mobility and like charge. J. Chromatogr. 608, 47–57 (1992)

    Article  Google Scholar 

  28. Z.K. Shihabi, Peptide stacking by acetonitrile-salt mixtures for capillary zone electrophoresis. J. Chromatogr. A 744, 231–240 (1996)

    Article  Google Scholar 

  29. Y.P. Zhao, C.E. Lunte, pH-mediated field amplification on-column preconcentration of anions in physiological samples for capillary electrophoresis. Anal. Chem. 71, 3985–3991 (1999)

    Article  Google Scholar 

  30. P. Britz-McKibbin, G.M. Bebault, D.D.Y. Chen, Velocity–difference induced focusing of nucleotides in capillary electrophoresis with a dynamic pH junction. Anal. Chem. 72, 1729–1735 (2000)

    Article  Google Scholar 

  31. J.P. Quirino, M.T. Dulay, R.N. Zare, On-line preconcentration in capillary electrochromatography using a porous monolith together with solvent gradient and sample stacking. Anal. Chem. 73, 5557–5563 (2001)

    Article  Google Scholar 

  32. J.P. Quirino, J.B. Kim, S. Terabe, Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis. J. Chromatogr. A 965, 357–373 (2002)

    Article  Google Scholar 

  33. J.P. Quirino, S. Terabe, Approaching a million-fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection: cation-selective exhaustive injection and sweeping. Anal. Chem. 72, 1023–1030 (2000)

    Article  Google Scholar 

  34. P. Britz-McKibbin, K. Otsuka, S. Terabe, On-line focusing of flavin derivatives using dynamic ph junction-sweeping capillary electrophoresis with laser-induced fluorescence detection. Anal. Chem. 74, 3736–3743 (2002)

    Article  Google Scholar 

  35. A.R. Timerbaev, T. Hirokawa, Recent advances of transient isotachophoresis-capillary electrophoresis in the analysis of small ions from high-conductivity matrices. Electrophoresis 27, 323–340 (2006)

    Article  Google Scholar 

  36. Z. Mala, A. Slampova, P. Gebauer, P. Bocek, Contemporary sample stacking in CE. Electrophoresis 30, 215–229 (2009)

    Article  Google Scholar 

  37. Z. Mala, L. Krivankova, P. Gebauer, P. Bocek, Contemporary sample stacking in CE: a sophisticated tool based on simple principles. Electrophoresis 28, 243–253 (2007)

    Article  Google Scholar 

  38. D.S. Burgi, B.C. Giordano, in Online sample preconcentration for capillary electrophoresis, ed. by J.P. Landers. Handbook of capillary and microchip electrophoresis and associated microtechniques, vol 3, (CRC Press, Taylor&Francis Group, Boca Raton, New York 2008)

    Google Scholar 

  39. S.L. Simpson Jr, J.P. Quirino, S. Terabe, On-line sample preconcentration in capillary electrophoresis fundamentals and applications. J. Chromatogr. A 1184, 504–541 (2008)

    Article  Google Scholar 

  40. K. Sueyoshi, F. Kitagawa, K. Otsuka, Recent progress of online sample preconcentration techniques in microchip electrophoresis. J. Sep. Sci. 31, 2650–2666 (2008)

    Article  Google Scholar 

  41. R.L. Chien, D.S. Burgi, Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis. Anal. Chem. 64, 1046–1050 (1992)

    Article  Google Scholar 

  42. R.L. Chien, D.S. Burgi, Field amplified sample injection in high-performance capillary electrophoresis. J. Chromatogr. 559, 141–152 (1991)

    Article  Google Scholar 

  43. E. Dąbek-Złotorzynska, M. Piechowski, Application of CE with novel dynamic coatings and field-amplified sample injection to the sensitive determination of isomeric benzoic acids in atmospheric aerosols and vehicular emission. Electrophoresis 28, 3526–3534 (2007)

    Article  Google Scholar 

  44. L. Yu, S.F.Y. Li, Large-volume sample stacking with polarity switching for the analysis of bacteria by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. A 1161, 308–313 (2007)

    Article  Google Scholar 

  45. Y. He, H.K. Lee, Large-volume sample stacking in acidic buffer for analysis of small organic and inorganic anions by capillary electrophoresis. Anal. Chem. 71, 995–1001 (1999)

    Article  Google Scholar 

  46. C.Y. Kuo, S.S. Chiou, S.M. Wu, Solid-phase extraction and large-volume sample stacking with an electroosmotic flow pump in capillary electrophoresis for determination of methotrexate and its metabolites in human plasma. Electrophoresis 27, 2905–2909 (2006)

    Article  Google Scholar 

  47. L. Zhang, X.F. Yin, Field amplified sample stacking coupled with chip-based capillary electrophoresis using negative pressure sample injection technique. J. Chromatogr. A 1137, 243–248 (2006)

    Article  Google Scholar 

  48. Z.L. Chen, G. Owens, R. Naidu, Confirmation of vanadium complex formation using electrospray mass spectrometry and determination of vanadium speciation by sample stacking capillary electrophoresis. Anal. Chim. Acta 585, 32–37 (2007)

    Article  Google Scholar 

  49. Z.L. Chen, M. Megharaj, R. Naidu, Confirmation of iron complex formation using electrospray ionization mass spectrometry (ESI-MS) and sample stacking for analysis of iron polycarboxylate speciation by capillary electrophoresis. Microchem. J. 86, 94–101 (2007)

    Article  Google Scholar 

  50. C. Quesada-Molina, A.M. Garcia-Campana, L. del Olmo-Iruela, M. del Olmo, Large volume sample stacking in capillary zone electrophoresis for the monitoring of the degradation products of metribuzin in environmental samples. J. Chromatogr. A 1164, 320–328 (2007)

    Article  Google Scholar 

  51. M.L. Bailon-Perez, A.M. Garcia-Campana, C. Cruces-Blanco, M.D. Iruela, Trace determination of β-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis. J. Chromatogr. A 1185, 273–280 (2008)

    Article  Google Scholar 

  52. K. Kutschera, A.C. Schmidt, S. Kohler, M. Otto, CZE for the speciation of arsenic in aqueous soil extracts. Electrophoresis 28, 3466–3476 (2007)

    Article  Google Scholar 

  53. M.I. Bailon-Perez, A.M. Garcia-Campana, C. Cruces-Blanco, M. del Olmo Iruela, Large-volume sample stacking for the analysis of seven β-lactam antibiotics in milk samples of different origins by CZE. Electrophoresis 28, 4082–4090 (2007)

    Article  Google Scholar 

  54. J.J. Soto-Chinchilla, A.M. Garcia-Campana, L. Gamiz-Garcia, C. Cruces-Blanco, Application of capillary zone electrophoresis with large-volume sample stacking to the sensitive determination of sulfonamides in meat and ground water. Electrophoresis 27, 4060–4068 (2006)

    Article  Google Scholar 

  55. E. Bermudo, O. Nunez, L. Puignou, M.T. Galceran, Analysis of acrylamide in food products by in-line preconcentration capillary zone electrophoresis. J. Chromatogr. A 1129, 129–134 (2006)

    Article  Google Scholar 

  56. M.E. Hadwiger, S.R. Torchia, S. Park, M.E. Biggin, C.E. Lunte, Optimization of the separation and detection of the enantiomers of isoproterenol in microdialysis samples by cyclodextrin-modified capillary electrophoresis using electrochemical detection. J. Chromatogr. B 681, 241–249 (1996)

    Article  Google Scholar 

  57. F. Foret, E. Szoko, B.L. Karger, On-column transient and coupled column isotachophoretic preconcentration of protein samples in capillary zone electrophoresis. J. Chromatogr. 608, 3–12 (1992)

    Article  Google Scholar 

  58. T. Hirokawa, H. Okamoto, B. Gas, High-sensitive capillary zone electrophoresis analysis by electrokinetic injection with transient isotachophoretic preconcentration: electrokinetic supercharging. Electrophoresis 24, 498–504 (2003)

    Article  Google Scholar 

  59. I. Botello, F. Borrull, C. Aguilar, M. Calull, Electrokinetic supercharging focusing in capillary zone electrophoresis of weakly ionizable analytes in environmental and biological samples. Electrophoresis 31, 2964–2973 (2010)

    Article  Google Scholar 

  60. Z.K. Shihabi, Stacking and discontinuous buffers in capillary zone electrophoresis. Electrophoresis 21, 2872–2878 (2000)

    Article  Google Scholar 

  61. Z.K. Shihabi, Transient pseudo-isotachophoresis for sample concentration in capillary electrophoresis. Electrophoresis 23, 1612–1617 (2002)

    Article  Google Scholar 

  62. Z.K. Shihabi, M.E. Hinsdale, C.P. Cheng, Analysis of glutathione by capillary electrophoresis based on sample stacking. Electrophoresis 22, 2351–2354 (2001)

    Article  Google Scholar 

  63. P. Kubalczyk, E. Bald, Transient pseudo-isotachophoretic stacking in analysis of plasma for homocysteine by capillary zone electrophoresis. Anal. Bioanal. Chem. 384, 1181–1185 (2006)

    Article  Google Scholar 

  64. P. Kubalczyk, E. Bald, Method for determination of total cysteamine in human plasma by high performance capillary electrophoresis with acetonitrile stacking. Electrophoresis 29, 3636–3640 (2008)

    Article  Google Scholar 

  65. P. Kubalczyk, E. Bald, Analysis of orange juice for total cysteine and glutathione content by CZE with UV-absorption detection. Electrophoresis 30, 2280–2283 (2009)

    Article  Google Scholar 

  66. Y. Kong, N. Zheng, Z. Zhang, R. Gao, Optimization stacking by transient pseudo-isotachophoresis for capillary electrophoresis: example analysis of plasma glutathione. J. Chromatogr. B 795, 9–15 (2003)

    Article  Google Scholar 

  67. Y. Chen, L. Xu, L. Zhang, G. Chen, Separation and determination of peptide hormones by capillary electrophoresis with laser-induced fluorescence coupled with transient pseudo-isotachophoresis preconcentration. Anal. Biochem. 380, 297–302 (2008)

    Article  Google Scholar 

  68. Z.X. Zhang, X.W. Zhang, J.J. Wang, S.S. Zhang, Sequential preconcentration by coupling of field amplified sample injection with pseudo isotachophoresis-acid stacking for analysis of alkaloids in capillary electrophoresis. Anal. Bioanal. Chem. 390, 1645–1652 (2008)

    Article  Google Scholar 

  69. R. Aebersold, H.D. Morrison, Analysis of dilute peptide samples by capillary zone electrophoresis. J. Chromatogr. A 516, 79–88 (1990)

    Article  Google Scholar 

  70. J. Horakova, J. Petr, V. Maier, J. Znaleziona, A. Stanová, J. Marák, D. Kaniansky, J. Sevcík, Combination of large volume sample stacking and dynamic pH junction for on-line preconcentration of weak electrolytes by capillary electrophoresis in comparison with isotachophoretic techniques. J. Chromatogr. A 1155, 193–198 (2007)

    Article  Google Scholar 

  71. P. Britz-Mckibbin, A.R. Kranack, A. Paprica, D.D.Y. Chen, Quantitative assay for epinephrine in dental anesthetic solutions by capillary electrophoresis. Analyst 123, 1461–1463 (1998)

    Article  ADS  Google Scholar 

  72. P. Britz-McKibbin, D.D.Y. Chen, selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction. Anal. Chem. 72, 1242–1252 (2000)

    Article  Google Scholar 

  73. K. Imami, M.R.N. Monton, Y. Ishihama, S. Terabe, Simple on-line sample preconcentration technique for peptides based on dynamic pH junction in capillary electrophoresis-mass spectrometry. J. Chromatogr. A 1148, 250–255 (2007)

    Article  Google Scholar 

  74. J. Jaafar, Z. Irwan, R. Ahamad, S. Terabe, T. Ikegami, N. Tanaka, Online preconcentration of arsenic compounds by dynamic pH junction-capillary electrophoresis. J. Sep. Sci. 30, 391–398 (2007)

    Article  Google Scholar 

  75. A.A. Kazarian, E.F. Hilder, M.C. Breadmore, Utilisation of pH stacking in conjunction with a highly absorbing chromophore, 5-aminofluorescein, to improve the sensitivity of capillary electrophoresis for carbohydrate analysis. J. Chromatogr. A 1200, 84–91 (2008)

    Article  Google Scholar 

  76. Z. Liu, P. Sam, S.R. Sirimanne, P.C. McClure, J. Grainger, D.G. Patterson, Field-amplified sample stacking in micellar electrokinetic chromatography for on-column sample concentration of neutral molecules. J. Chromatogr. A 673, 125–132 (1994)

    Article  Google Scholar 

  77. J.P. Quirino, S. Terabe, Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography. Science 282, 465–468 (1998)

    Article  ADS  Google Scholar 

  78. J. Palmer, N.J. Munro, J.P. Landers, A universal concept for stacking neutral analytes in micellar capillary electrophoresis. Anal. Chem. 71, 1679–1687 (1999)

    Article  Google Scholar 

  79. Y. Hongyuan, Y. Gengliang, Q. Fengxia, L. Haiyan, C. Li, Determination of phenol pollutants in industrial waste water by MEKC and on-line sweeping technique. Chem J Internet 6, 26 (2004)

    Google Scholar 

  80. O. Nunez, J.B. Kim, E. Moyano, M.T. Galceran, S. Terabe, Analysis of the herbicides paraquat, diquat and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation selective exhaustive injection. J. Chromatogr. A 961, 65–75 (2002)

    Article  Google Scholar 

  81. C.L. Da Silva, E.C. de Lima, M.F.M. Tavares, Investigation of preconcentration strategies for the trace analysis of multi-residue pesticides in real samples by capillary electrophoresis. J. Chromatogr. A 1014, 109–116 (2003)

    Article  Google Scholar 

  82. S.W. Sun, H.M. Tseng, Sensitivity improvement on detection of Coptidis alkaloids by sweeping in capillary electrophoresis. J. Pharma. Biomed. Anal. 37, 39–45 (2005)

    Article  Google Scholar 

  83. J. Palmer, D.S. Burgi, J.P. Landers, Electrokinetic stacking injection of neutral analytes under continuous conductivity conditions. Anal. Chem. 74, 632–638 (2002)

    Article  Google Scholar 

  84. C.J. Yu, H.C. Chang, W.L. Tseng, On-line concentration of proteins by SDS-CGE with LIF detection. Electrophoresis 29, 483–490 (2008)

    Article  Google Scholar 

  85. J. de Jong, R.G.H. Lammertink, M. Wessling, Membranes and microfluidics: a review. Lab Chip 6, 1125–1139 (2006)

    Article  Google Scholar 

  86. A. Holtzel, U. Tallarek, Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics. J. Sep. Sci. 30, 1398–1419 (2007)

    Article  Google Scholar 

  87. M.L. Kovarik, S.C. Jacobson, Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles. Anal. Chem. 80, 657–664 (2008)

    Article  Google Scholar 

  88. Y.H. Kim, I. Yang, S.R. Park, Well-less capillary array electrophoresis chip using hydrophilic sample bridges. Anal. Chem. 79, 9205–9210 (2007)

    Article  Google Scholar 

  89. R. Dhopeshwarkar, R.M. Crooks, D. Hlushkou, U. Tallarek, Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane. Anal. Chem. 80, 1039–1048 (2008)

    Article  Google Scholar 

  90. J.H. Lee, S. Chung, S.J. Kim, J.Y. Han, Poly(dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown. Anal. Chem. 79, 6868–6873 (2007)

    Article  Google Scholar 

  91. Z.C. Long, D.Y. Liu, N.N. Ye, J.H. Qin, B.C. Lin, Integration of nanoporous membranes for sample filtration/preconcentration in microchip electrophoresis. Electrophoresis 27, 4927–4934 (2006)

    Article  Google Scholar 

  92. P. Puig, F. Borrull, M. Calull, C. Aguilar, Sorbent preconcentration procedures coupled to capillary electrophoresis for environmental and biological applications. Anal. Chem. Acta. 616, 1–18 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Kubalczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kubalczyk, P., Bald, E. (2013). Methods of Analyte Concentration in a Capillary. In: Buszewski, B., Dziubakiewicz, E., Szumski, M. (eds) Electromigration Techniques. Springer Series in Chemical Physics, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35043-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35043-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35042-9

  • Online ISBN: 978-3-642-35043-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics