Skip to main content

Energy-Efficient Indoor Spaces Through Building Automation

  • Chapter
  • First Online:
Inter-cooperative Collective Intelligence: Techniques and Applications

Abstract

Building intelligence and, more recently, energy efficiency are key concepts to bear in mind when future smart spaces are considered. Common automation capabilities in the field of domotics only presented the first building blocks for the indoor spaces of the future. In this framework, energy consumption requires a special treatment, due to the strident environment preservation issues that the society is facing nowadays. For this reason, new solutions are needed to deal with the increasing power requirements of indoor spaces. In this line, an intelligent building platform which embraces not only well known automation necessities of indoor spaces, such as automatic lighting, security, remote access, etc., but also novel concepts in the fields of context-awareness, resident tracking and profiling, and net-zero/positive energy building are considered in a new proposal: the PLATERO platform. This chapter provides a detailed background on building automation/intelligence and energy efficiency and then details the novel architecture of PLATERO, its main elements and energy efficiency subsystems, and describes the different prototypes developed and deployed in a reference energy-efficiency building.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.um.es/otri/?opc=cttfuentealamo

References

  1. D. Clements-Croome, D.J. Croome, Intelligent Buildings: Design, Management and Operation (Thomas Telford, London, 2004), pp. 221–228

    Google Scholar 

  2. K. Sangani, Home automation—it’s no place like home. IET Eng. Technol. 1, 46–48 (2006)

    Article  Google Scholar 

  3. S.S. Intille, Designing a home of the future. IEEE Pervasive Comput. 1, 76–82 (2002)

    Article  Google Scholar 

  4. K. Wacks, Home systems standards: achievements and challenges. IEEE Commun. Mag. 40, 152–159 (2002)

    Article  Google Scholar 

  5. J. Walko, Home control. IET Comput. Control Eng. J. 17, 16–19 (2006)

    Article  Google Scholar 

  6. International Energy Agency, Key World Energy Statistics (IEA Report, Paris, 2010)

    Google Scholar 

  7. European Commission, DIRECTIVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 19 May 2010 on the energy performance of buildings (recast). Official J. Eur. Union 53(153), 13–34 (2010)

    Google Scholar 

  8. L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information. Energy Build. 40, 394–398 (2008)

    Article  Google Scholar 

  9. D.H.A.L. van Dijk, E.E. Khalil, Energy efficiency in buildings. ISO Focus 22–26 (2009). September 2009

    Google Scholar 

  10. M. Hazas, A. Friday, J. Scott, Look back before leaping forward: four decades of domestic energy inquiry. IEEE Pervasive Comput. 10, 13–19 (2011)

    Article  Google Scholar 

  11. A.I. Dounis, C. Caraiscos, Advanced control systems engineering for energy and comfort management in a building environment–a review. Renew. Sustain. Energy Rev. 13, 1246–1261 (2009)

    Article  Google Scholar 

  12. A.R. Al-Ali, M. Al-Rousan, Java-based home automation system. IEEE Tran. Consum. Electron. 50, 498–504 (2004)

    Article  Google Scholar 

  13. A.Z. Alkar, U. Buhur, An internet based wireless home automation system for multifunctional devices. IEEE Tran. Consum. Electron. 51, 1169–1174 (2005)

    Article  Google Scholar 

  14. R.J. Caleira, in A Web-Based Approach to the Specification and Programming of Home Automation Systems. 12th Mediterranean Electrotechnical Conference (IEEE Press, New York, 2004) pp. 693–696

    Google Scholar 

  15. J. Nehmer, M. Becker, A. Karshmer, R. Lamm, in Living Assistance Systems—An Ambient Intelligence Approach. ACM International Conference Software Engineering (ACM Press, New York, 2006), pp. 43–50.

    Google Scholar 

  16. A.J. Jara, M.A. Zamora, A.G. Skarmeta, in A Wearable System for Tele-Monitoring and Tele-Assistance of Patients with Integration of Solutions from Chronobiology for Prediction of Illness. Ambient Intelligence Perspectives (IOS Press, Lansdale, 2008), pp. 221–228.

    Google Scholar 

  17. S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, E. Jansen, The gator tech smart house: a programmable pervasive space. Computer 38, 50–60 (2005)

    Article  Google Scholar 

  18. A. Meliones, D. Economou, I. Grammatikakis, A. Kameas, C. Goumopoulos, in A Context Aware Connected Home Platform for Pervasive Applications. Second IEEE International Conference Self-Adaptive and Self-Organizing Systems Workshops (IEEE Press, New York, 2008) pp. 120–125.

    Google Scholar 

  19. D.T.J. O’Sullivan, M.M. Keane, D. Kelliher, R.J. Hitchcock, Improving building operation by tracking performance metrics throughout the building lifecycle (BLC). Energy Build. 36, 1075–1090 (2004)

    Article  Google Scholar 

  20. Z. Chen, D. Clements-Croome, J. Hong, H. Li, Q. Xu, A multicriteria lifespan energy efficiency approach to intelligent building assessment. Energy Build. 38, 393–409 (2006)

    Article  Google Scholar 

  21. C. Diakaki, E. Grigoroudis, D. Kolokotsa, Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy Build. 40, 1747–1754 (2008)

    Article  Google Scholar 

  22. D. Kolokotsa, D. Rovas, E. Kosmatopoulos, K. Kalaitzakis, A roadmap towards intelligent net zero- and positive-energy buildings. Solar Energy 85, 3067–3084 (2011)

    Article  Google Scholar 

  23. J. Figueiredo, J. Martins, Energy production system management—renewable energy power supply integration with building automation system. Energy Convers. Manag. 51, 1120–1126 (2010)

    Article  Google Scholar 

  24. G. Escrivá-Escrivá, C. Álvarez-Bel, E. Peñalvo-López, New indices to assess building energy efficiency at the use stage. Energy Build. 43, 476–484 (2011)

    Article  Google Scholar 

  25. V. Sundramoorthy, G. Cooper, N. Linge, Q. Liu, Domesticating energy-monitoring systems: challenges and design concerns. IEEE Pervasive Comput. 10, 20–27 (2011)

    Article  Google Scholar 

  26. D. Bonino, F. Corno, F. Razzak, Enabling machine understandable exchange of energy consumption information in intelligent domotic environments. Energy Build. 43, 1392–1402 (2011)

    Article  Google Scholar 

  27. D. Han, J. Lim, Design and implementation of smart home energy management systems based on ZigBee. IEEE Trans. Consum. Electron. 56, 1417–1425 (2010)

    Article  Google Scholar 

  28. P. Oksa, M. Soini, L. Sydänheimo, M. Kivikoski, Kilavi platform for wireless building automation. Energy Build. 40, 1721–1730 (2008)

    Article  Google Scholar 

  29. M.A. Zamora-Izquierdo, J. Santa, A.F. Gomez-Skarmeta, An integral and networked home automation solution for indoor ambient intelligence. IEEE Pervasive Comput. 9, 66–77 (2010)

    Article  Google Scholar 

  30. P. Pellegrino, D. Bonino, F. Corno, in Domotic House Gateway. ACM Symposium Applied Computing (ACM Press, New York, 2006), pp. 1915–1920

    Google Scholar 

  31. F.T.H. den Hartog, M. Balm, C.M. de Jong, J.J.B. Kwaaitaai, Convergence of residential gateway technology. IEEE Commun. Mag. 42, 138–143 (2004)

    Article  Google Scholar 

  32. K. Myoung, J. Heo, W.H. Kwon, D. Kim, in Design and Implementation of Home Network Control Protocol on OSGi for Home Automation System. 7th International Conference Advanced Communication Technology (IEEE Press, New York, 2005), pp. 1163–1168

    Google Scholar 

  33. P. Bergstrom, K. Driscoll, J. Kimball, Making home automation communications secure. Computer 34, 50–56 (2001)

    Article  Google Scholar 

  34. Centre Europeen de Normalisation, Indoor environmental input parameters for design and assesment of energy performance of buildings—addressing indoor air quality, thermal environment, lighting and acoustics. EN 15251 (2006)

    Google Scholar 

  35. M.V. Moreno, M.A. Zamora, J. Santa, in An Indoor Localization Mechanism Based on RFID and IR Data in Ambient Intelligent Environments. The Sixth International Conference Innovative Mobile and Internet Services in Ubiquitous Computing (IEEE Press, New York, 2012), pp. 805–810

    Google Scholar 

  36. S. Kalogirou, Applications of artificial neural-networks for energy systems. Appl. Energy 67, 17–35 (2000)

    Article  Google Scholar 

  37. D. Cohen, M. Krarti, in A Neural Network Modeling Approach Applied to Energy Conservation Retrofits. International Conference Building Simulation, pp. 423–430 (1995)

    Google Scholar 

  38. B. Egilegor, J. Uribe, G. Arregi, E. Pradilla, L. Susperregi, A fuzzy control adapted by a neural network to maintain a dwelling within thermal comfort. Build. Simul. 2, 87–94 (1997)

    Google Scholar 

  39. Y.W. Teng, W. Wang, Constructing a user-friendly GA-based fuzzy system directly from numerical data. IEEE Tran. Syst. Man Cybern. Part B 34, 2060–2070 (2004)

    Article  Google Scholar 

  40. R. Babuska, Fuzzy Modeling and Identification. International Series in Intelligent Technologies (Kluwer Academic Publishers, Dordrecht, 1998)

    Google Scholar 

  41. J. Jang, Anfis: adaptive-network-based fuzzy inference system. IEEE Tran. Syst. Man Cybern. Part B 23, 665–685 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been sponsored by the European Seventh Framework Program, through the IoT6 project (contract 288445); the Seneca Foundation, by means of the GERM program (04552/GERM/06) and the FPI program (grant 15493/FPI/10); and the Spanish Ministry of Education and Science, thanks to the the FPU program (grant AP2009-3981).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Santa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Santa, J., Zamora-Izquierdo, M.A., Moreno-Cano, M.V., Jara, A.J., Skarmeta, A.F. (2014). Energy-Efficient Indoor Spaces Through Building Automation. In: Xhafa, F., Bessis, N. (eds) Inter-cooperative Collective Intelligence: Techniques and Applications. Studies in Computational Intelligence, vol 495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35016-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35016-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35015-3

  • Online ISBN: 978-3-642-35016-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics