Skip to main content

System Surfaces: There Is Never Just Only One Structure

  • Chapter
  • First Online:
Book cover Evolution of Semantic Systems
  • 921 Accesses

Abstract

When making modes, it is a constitutive question, how a system can be described and where the borderlines between a system and its environment can be drawn. The epistemic position of system realism (there are systems as ontic entities) and system nominalism (systems are only descriptions) leads to the concept of natural surfaces on the one side and to the authorship of defined borders on the other side. A more mediated position, the system descriptionism, is unfolded here: it is shown that changing objects or processes, which are described as systems, require new system theoretical concepts. As one of them, the notion of non-classical system is introduced, and a classification thereof is proposed.

Ich weiß ein allgewaltiges Wort auf Meilen hört’s ein Tauber. Es wirkt geschäftig fort und fort mit unbegriffnem Zauber ist nirgends und ist überall bald lästig, bald bequem. Es passt auf ein und jeden Fall: das Wort - es heißt System.

Franz Grillparzer (1791–1872)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Franz Grillparzer (1791–1872), Austrian Poet, cf. [32, GG VI 316, p. 463].

  2. 2.

    The following section has been adopted and modified from a former paper, cf. [68].

  3. 3.

    Here we do not use the term “ontology” as it is used in the realm of computer science like in artificial intelligence, data base technology, and others (universe of discourse). We refer to the original term ontology as it is used in philosophy. Ontology is the teaching about being (Sein), existing things (Seiendes), and modalities thereof.

  4. 4.

    Cf. for instance Heraklit: Über die Natur. Fragment 1 and 2 [15, p. 77] or Fragments 10–13 [15, p. 131f.]. For medieval thinkers take for an example Heinrich Gent [29, p. 564 ff.]. Cf. also Hübner’s article about order (Ordnung) [50, pp. 1254–1279].

  5. 5.

    Like the Aristotelian book (1965) with the headline de generatione et corruptione [4].

  6. 6.

    Cf. [3, Poetry, Book 18, 1456a11] or in [5, Nicomachian Ethics, Book 9, 1168b32].

  7. 7.

    Cf. a comprehensive summary by [112, p. 1463].

  8. 8.

    For a more extensive presentation of the history of system concept cf. [35, 102, 104].

  9. 9.

    Heidegger [40] pointed out that a system is encompassing all what can be deduced. It induces structures and changes all knowledge of science, it saves it (the knowledge; the author) and brings it to communication; it may be conceptualized as the totality of grounding relations, in which the matter of science (as objects, germ.: “Gegenstände”; the author) is represented with respect to its basis, and where they can be understood conceptually [40, p. 56] (transl. by the author). This has been also explicitly pronounced by Heidegger in his famous SPIEGEL-Gespräch (1976) with Augstein [42]: What will come after Philosophy? Cybernetics. But this will not be Philosophy anymore. (transl. by the author).

  10. 10.

    Like cybernetics or control theory [109], theory of automaton [88, 91], theory of syntax [20], game theory [90], theory of communication [57, 58, 103], and general system theory [9]. All these theories deal with state space approaches, at least homomorphism between syntax theory and theory of automaton can be shown, discrete cybernetics are automata, and continuous automata can be modeled as control circuits. Game theory can be modeled as automata, and the theory of communication can be formulated either as statistics of stochastic signal processes or even as noisy automata (i.e., communication channels, receivers, and emitters). These theories may considered to be classical theories (see Sect. 4).

  11. 11.

    In this rigidity the statements hold exactly only for linear type behavior of the elementary behaviors.

  12. 12.

    The structure, shown in Fig. 2, serves as an example.

  13. 13.

    Cf. for this distinction at [41, Sect. 15, p. 69 ff.] between a present object, found by man, i.e., Vorhandenes = presented-at-hand (as an objet trouvé), and a tool as Zuhandenes = the readiness-to-hand. For the translation of this concept by J.M. Macquarrie and E. Robinson cf. [41, p. 98 f.].

  14. 14.

    Cf. Democrit in [15] pp. 396–405 (fragments 68 A) and p. 418 (fragment 68 A 71). Notation according [22], Vol. 2, p. 41 ff. and p. 95 ff. respectively.

  15. 15.

    The set theoretic definition of a system is given according to [86, p. 254 ff.]. A general system is a relation on abstract sets S ∈ X{V i ; i ∈ I} with X as the Cartesian product. I is the index set. If I is finite, it is \(S \in V _{1} \times V _{2}\ldots V _{n}\); the components of the relation V i are called objects of systems. They can be divided into the input variables X ∈ { V i ; i ∈ I X } and the output variables Y ∈ { V i ; i ∈ I y } such that an input/output system can be written as S ⊂ { X ×Y }. The definitions in Chap. 1.2 can be regarded as specifications of this concept.

  16. 16.

    Let us presuppose that some modifications in the mathematical apparatus of system theory are possible. These modifications are discussed in [87, 108], and [61] with respect to numerous applications and disciplines.

  17. 17.

    Structurally seen, a method to found a system of rules, i.e., for moral philosophy, in a pragmatic-transcendental way (acc. to [2]) is coextensive with a method of foundation for rules of the use of a system. More in detail: any pragmatic interpretation of scientific law leads only to a rule of action, if the validity of the law and the acceptance for the necessity of existence thereof are unanimously accepted as an a priori in the realm of a dispute procedure. If, when designing a system model, validity and acceptance cannot be denied without contradictions, then one has a constitutive presupposition for the design itself.

  18. 18.

    For this section cf. also [63, Chap. I.4.].

  19. 19.

    Oral communication by Walter v. Lucadou, 1974.

  20. 20.

    This is not very original, but it used to be forgotten quite often. The relevant passage at Kant in Critique of Pure Reason: Philosophical cognition is the cognition of reason by means of conceptions; mathematical cognition is cognition by means of the construction of conceptions. The construction of a conception is the presentation a priori of the intuition which corresponds to the conception. For this purpose a nonempirical intuition is a requisite, which, as an intuition, is an individual object; while, as the construction of a conception (a general representation), it must be seen to be universally valid for all the possible intuitions which rank under that conception. [“Die philosophische Erkenntnis ist die Vernunfterkenntnis aus Begriffen, die mathematische aus der Konstruktion der Begriffe. Einen Begriff konstruieren heißt: die ihm korrespondierende Anschauung a priori darstellen. Zur Konstruktion eines Begriffs wird also eine nicht empirische Anschauung erfordert, ohne folglich, als Anschauung, ein einzelnes Objekt ist, aber nichtsdestoweniger, als die Konstruktion eines Begriffs (einer allgemeinen Vorstellung), Allgemeingültigkeit für alle möglichen Anschauungen, die unter denselben Begriff gehören, in der Vorstellung ausdrücken muss.”] (cf. [53, B 741], translated by J. M. D. Meiklejohn; cf. http://www.gutenberg.org/cache/epub/4280/pg4280.html).

  21. 21.

    Einstein has paraphrased this Kantian position in his famous lecture for the Prussian Academy of Science about “Geometry and Experience”: As long as mathematical propositions refer to reality they are not certain, and as long as they are certain [well proved], they don’t refer to reality. Cf. [23, p. 119 f.] (transl. by the author).

  22. 22.

    See textbooks for orbital calculations [11].

  23. 23.

    These conditions are not valid, if the concept of derivability and the concept of conclusion (i.e., the concept of truth and provability) don’t coincide anymore. This is the case in higher level calculi, proved by Gödel [31]. This leads to a lot of restrictions for system descriptions when dealing with complex systems that must be modeled by such higher level calculi. Cf. [63, Chap. III.2.].

  24. 24.

    See above; for [17, Part. Sect. 9–11], this was a pseudo-problem of philosophy.

  25. 25.

    Heisenberg [45, p. 92] reported about an entretien with Albert Einstein in the year 1927. According to that, Einstein said: From a heuristic point of view it may be useful to remember what we really observe. In principle it is completely wrong to ground a theory on only observable entities. The reality runs the other way around: It’s just the theory which decides what you can observe. (Transl. by the author). Later, Heisenberg adopted this point of view: We have to remember that what we observe is not nature [here] itself, but nature exposed to our method of questioning. Cf. [44, pp. 58, 41].

  26. 26.

    The concept of function has not yet made explicit. Nevertheless it is comprehensible in terms of a mathematical function as a mapping; cf. [60].

  27. 27.

    This is expressed by the so-called Ramsay Theorem; cf. [16, pp. 246–254].

  28. 28.

    For reductionism see also [82] and [63, Chap. III.4.].

  29. 29.

    This is due the fact that we are used to design concepts. Adopting the picture of Klix [56, pp. 536–549], it is clear that each observation based science presupposes the possibility of invariants. Invariant properties can be characterized by a structural difference to what one can observe. Each object seems to be higher structured as its environment—this is what an observer states if he speaks about an object. What can be observed potentially from the forms of observation are possible structures of objects. These and only these structures correspond with the possible forms of observation. This is the reason to use the term “coextensive.”

  30. 30.

    This is not a concept which could be interpreted as an operative measurement rule (Messvorschrift). To each observable there is a concept, but not vice versa, cf. [16, p. 59ff.].

  31. 31.

    Here structure has the meaning we ascribed to it in Sect. 1, Fig. 2.

  32. 32.

    The concept of preparation is discussed intensively with respect to quantum mechanical measurement. The preparation of the constraints is an ontic presupposition for the availability of a system and therefore for an experiment. On the level of description we have the definition of the constraints as initial and boundary conditions, together with the dynamics of a system in order to make predictions.

  33. 33.

    As proposed by Weizsäcker [107, p. 259].

  34. 34.

    This is no contradiction to the saying above according to which system theory could be a theory of possible structures. A measurement device presupposes an elementary structure, realized in an apparatus that is defined by the concept, which is the base of the observed variable. Thus an observed structure must have a relation to the elementary structure of the measurement device. This relation is contained within a theory about the field of objects in question.

  35. 35.

    Cf. [93, Chap. 4, particularly Chap. 4.4, pp. 233–271]. In quantum theory Hilbert spaces are applied. When controlling systems non-interaction-free observed, dual spaces like Hilbert spaces are applied, too, e.g., for linear time discrete systems. Even the problem of nondistinguishable state is discussed there.

  36. 36.

    Cf. Heisenberg’s original paper [43]; with respect to this see also the canonical textbook of Landau and Liefschitz [76, vol. 3, Sect. 16, p. 49ff.].

  37. 37.

    Nevertheless, an estimation of these properties with observers free from interaction is also restricted when dealing with nonlinear systems. For exact definitions see textbooks of control and mathematical system theory. For illustration here some verbal definitions: Controllabilty is given, if it is possible, to “move” the system through the state space from a defined start state into a finite state (or area if states) of interest in a finite time by applying an input. Stability is the property of the system to remain at or come back to a finite state or area of states asymptotically, invariant from a given input. Reachability: The system behavior has an area or points within the state space that can be reached by a given input from an arbitrary starting point in a finite time. Feed-forward (or feed-through): the system output can be controlled to a given degree directly by the input. To this degree the system can be considered as a channel for the input. Observability means that one can estimate the starting point of a system by measuring the input and the output dynamics. Cf. [80, 93]. A real theoretically satisfying formalization of the control problem has been given by [8, 51, 97]. For history cf. also [111].

  38. 38.

    The picture of incompressibility of an algorithmic description of complex processes has been developed independently by Kolmogorov and Chaitin [18, 19, 58].

  39. 39.

    A critique of the concept of emergence is discussed in [67] and [70].

  40. 40.

    Attractors are points or finite areas within the state space, in which the system moves and remains asymptotically. Therefore systems with attractors are stable, but not necessarily controllable, since stability and reachability is only a necessary but not sufficient condition for controllability. See also textbooks about control and system theory.

  41. 41.

    In contrast to the modus ponens ([ ∀x(A(x) → B(x)) ∧ A(e)] → B(e)), the abduction concludes from the particular to the general: ([ ∀x(A(x) → B(x)) ∧ B(e)] → A(e)). The proposition logical expression ([(a → b) ∧ b] → a) is falsifiable, i.e., not always true.

  42. 42.

    For badly understood phenomena one is not successful to reduce them to law-like principles within the realm of a theory.

  43. 43.

    I refer here to several oral communications in talks with F. H. Zucker in Cambridge, M.A. in 1981 and 1982. Cf. also some hints in [113] and presumably in [114]. I have not yet found an extensive exploration of this hypothesis within literature, but this could be an interesting research question.

  44. 44.

    A detailed discussion of such complementarily related observables has been given by Röhrle [99]. He tried to show the hypothesis that the appearance of complementarily related entities within a system description indicates sign that the field of interest is not yet satisfyingly understood.

  45. 45.

    This has been shown by Kornwachs et al. [63, 71, 72] using a measure of complexity which is defined by the degree of time dependence of system structure.

  46. 46.

    Cf. [46]. For modern discussion see, e.g., [7, 13].

  47. 47.

    Nevertheless, it is not yet clear how the interaction between variables dependent upon time and location and invariant variables can be explained in an ontologically satisfying manner. From a phenomenological point of view one can model this within a system description if one has an idea how this interaction could be hypothesized. Cf. [64, 101].

  48. 48.

    It is really astonishing that processes with changing structures and patterns of behavior like decay and growth cannot be modeled satisfyingly with usual system theoretical descriptions, based on elementary set theory and mappings. This would require designing sets mathematically, which can generate or annihilate their own elements without a choice process from another finite set, of already “stored” elements. There is a correspondence to this problem with the fact that there is no real calculable GOTO in the theory of algorithms.

  49. 49.

    To introduce a wave function ψ in quantum mechanics is an actual strategy to do so. As a state ψ is no observable, but it obeys a linear “equation of motion,” the well-known Schrödinger equation. Even mathematical operations on this wave function will allow a calculation of the possible values (eigenvalues) of observables.

References

  1. Allison, L.: A Practical Introduction to Denotational Semantics. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  2. Apel, K.O.: Transformation der Philosophie, 2 Bde, 2nd edn. Suhrkamp, Frankfurt a.M. (1976)

    Google Scholar 

  3. Aristoteles: Vom Himmel. Von der Seele. Von der Dichtkunst. Übertragen und eingeleitet von O. Gigon, Hrsg. v. H. Hoenn. Artemis, Zürich (1950)

    Google Scholar 

  4. Aristotele: De Generatione et Corruptione. Über Werden und Vergehen. Hrsg. von Th. Buchheim. Meiner, Hamburg (2011)

    Google Scholar 

  5. Aristoteles: Nikomachische Ethik. (Übersetzt von O. Gigon). Artemis, Zürich (1967)

    Google Scholar 

  6. Atmanspacher, H.: Objectivation as an endo-exo transition. In: Atmanspacher, H., Dalenoort, G.J. (eds.) Inside Versus Outside. Endo- and Exo-Concepts of Observation and Knowledge in Physics, Philosophy and Cognitive Science, pp. 15–32. Springer, Berlin (1994)

    Chapter  Google Scholar 

  7. Atmanspacher, H.: Cartesian cut, Heisenberg cut, and the concept of complexity. World Futures 49, 333–355 (1997)

    Google Scholar 

  8. Bellmann, R.E.: Dynamische Programmierung und selbstanpassende Regelprozesse. Oldenbourg, München (1967)

    Google Scholar 

  9. von Bertalanffy, L.: General System Theory. Penguin Books, Hammondsworth (1968/1973)

    Google Scholar 

  10. Bohm, D., Bub, J.: A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys. 38, 453 ff (1966)

    Google Scholar 

  11. Bohrmann, A.: Bahnen künstlicher Satelliten. BI, Mannheim (1966)

    Google Scholar 

  12. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems (Santa Fe Institute Studies in the Sciences of Complexity Proceedings) (Paperback). Oxford University Press, London (1999)

    Google Scholar 

  13. von Borzeszkowski, H.-H., Wahsner, R.: Heisenberg’s cut and the limitations of its movability. Annalen der Physik 500, 522–528 (1988)

    Article  Google Scholar 

  14. Bullinger, H.-J., Kornwachs, K.: Expertensysteme – Anwendungen und Auswirkungen im Produktionsbetrieb. C.H. Beck, München (1990)

    Google Scholar 

  15. Capelle, W.: Die Vorsokratiker. Kröner, Stuttgart (1963)

    Google Scholar 

  16. Carnap, R.: Einführung in die Philosophie der Naturwissenschaft. Nymphenburger, München (1969)

    Google Scholar 

  17. Carnap, R.: Scheinprobleme in der Philosophie. Suhrkamp, Frankfurt/Main (1971)

    Google Scholar 

  18. Chaitin, G.J.: Information theoretic computational complexity. IEEE Trans. Inform. Theor. 20, 10–15 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chaitin, G.J.: Gödel’s theorem and information. Int. J. Theoret. Phys. 21(12), 941–954 (1982)

    Article  MathSciNet  Google Scholar 

  20. Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, Cambridge (1965)

    Google Scholar 

  21. Descartes, R.: Die Prinzipien der Philosophie (1644). Meiner, Hamburg (1965)

    Google Scholar 

  22. Diels, H., Kranz, W. (eds.): Die Fragmente der Vorsokratiker, 6th edn. B Fragmente, Dublin, Zürich (1972)

    Google Scholar 

  23. Einstein, A.: Geometrie und Erfahrung (1921). In: Einstein, A. (ed.) Mein Weltbild, pp. 119–127. Ullstein, Frankfurt a.M. (1983)

    Google Scholar 

  24. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Mathematical Aspects of Cognitive Science. Proceedings of Symposium on Applied Mathematics, vol. 19, pp. 19–32. AMS, New York (1967)

    Google Scholar 

  25. von Foerster, H.: On constructing a reality. In: Preiser, W.F.E. (ed.): Environmental Design Research, vol. 2, pp. 35–46. Dowden, Hutchinson & Ross, Stroudsburg (1973)

    Google Scholar 

  26. von Foerster, H.: Objects: Tokens for (Eigen-)Values. Cybern. Forum 8, 91 (1976)

    Google Scholar 

  27. Frege, G.: Logik in der Mathematik. In: Nachgelassene Schriften, hrsg. von H. Hermes, F. Kambartel und F. Kaulbach, 1. Band. Meiner, Hamburg (1969)

    Google Scholar 

  28. Gallee, M.A.: Bausteine einer abduktiven Wissenschafts- und Technikphilosophie. Lit, Münster (2003)

    Google Scholar 

  29. Gent, H.: Summa Quaestionum Ordinarium, vol. 2 (reprint). Franciscan Institute Press, Bonaventura (1953)

    Google Scholar 

  30. Glansdorff, P., Prigogine, I.: Structure, Stabilité et Fluctuations. Masson, Paris. English: Thermodynamic Theory of Structure. Stability and Fluctuations. Wiley, London (1971)

    Google Scholar 

  31. Gödel, K.: Formal unentscheidbare Sätze in der principia mathematica. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

    Article  Google Scholar 

  32. Grillparzer, F.: Epigramme. Hanser, München (1960)

    Google Scholar 

  33. Habermas, J.: Erkenntnis und Interesse. Suhrkamp, Frankfurt/Main (1971)

    Google Scholar 

  34. Habermas, J.: Theorie der Gesellschaft oder Sozialtechnologie? Einleitung. In: Habermas, J., Luhmann, N. (eds.) Theorie der Gesellschaft oder Sozialtechnologie, pp. 142 ff. Suhrkamp, Frankfurt/Main (1971)

    Google Scholar 

  35. Hager, F.-P.: System. I. Antike. In: Ritter, J., Gründer, K. (eds.) Historisches Wörterbuch der Philosophie, Bd. 10, pp. 824–825. Wiss. Buchgesellschaft, Darmstadt (1998)

    Google Scholar 

  36. Haken, H.: Synergetics. An Introduction. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  37. Haken, H.: Synergetics and the problem of Selforganization. In: Roth, G., Schwegler, R. (eds.) Selforganizing Systems. Campus Verlag, Frankfurt (1979)

    Google Scholar 

  38. Hegel, G.W.F.: Phänomenologie des Geistes. Vorrede (Bamberg, Würzburg, 1807), pp. 11–15. Ullstein, Frankfurt/Main (1970)

    Google Scholar 

  39. Hegel, G.W.F.: Grundlinien der Philosophie des Rechts. Vorrede (Berlin, 1821). In: Hauptwerke in sechs Bänden, Bd. 5. Meiner, Hamburg (1999)

    Google Scholar 

  40. Heidegger, M.: Identität und Differenz. Neske, Pfullingen (1957)

    Google Scholar 

  41. Heidegger, M.: Sein und Zeit, 11. Aufl. Niemeyer, Tübingen (1967). Engl.: Being and Time; translated by J.M. Macquarrie and E. Robinson. Blackwell, New York (1962), Reprint 2005

    Google Scholar 

  42. Heidegger, M.: Nur ein Gott kann uns retten. Der Spiegel 23, 209 (1976)

    Google Scholar 

  43. Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik 33, 879–893 (1925)

    Article  MATH  Google Scholar 

  44. Heisenberg, W.: Physik und Philosophie. Hirzel, Stuttgart (1962); Engl.: Physics and Philosophy: The Revolution in Modern Science (1958). Lectures delivered at University of St. Andrews, Scotland, Winter 1955–1956. Harper & Broth, New York (1958), Reprint 2007

    Google Scholar 

  45. Heisenberg, W.: Der Teil und das Ganze. Piper, München (1969)

    Google Scholar 

  46. Heisenberg, W.: Ist eine deterministische Ergänzung der Quantenmechanik möglich? (1935). In: Von Meyenn, K. (ed.) Wolfgang Pauli: Scientific Correspondence with Bohr, Einstein, Heisenberg, vol. II, pp. 409–418. Springer, Berlin (1985)

    Google Scholar 

  47. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  48. Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. ACM 12(10), 576–580, 583 (1969)

    Google Scholar 

  49. Hubig, C.: Mittel. Transcript, Bielfeld (2002)

    Google Scholar 

  50. Hübner, W.: Ordnung. II. Mittelalter. In: Ritter, J., Gründer, K. (eds.) Historisches Wörterbuch der Philosophie, Bd. 6, Sp. 1254–1279. Wiss. Buchgesellschaft, Darmstadt (1984)

    Google Scholar 

  51. Kalmann, R.E.: On the general theory of control systems. In: Proceedings of IFAC Congress, Moskau, Oldenburg, München (1960)

    Google Scholar 

  52. Kant, I.: Allgemeine Naturgeschichte und Theorie des Himmels oder Versuch von der Verfassung und dem mechanischen Ursprung des ganzen Weltgebäudes, nach Newtonschen Grundsätzen abgehandelt (Königsberg, Leipzig, 1755). In: Gesammelte Schriften, hrsg. von der Kgl. Preu. Akad. der Wissenschaften. Georg Reimer, Berlin (1910)

    Google Scholar 

  53. Kant, I.: Kritik der reinen Vernunft. Riga 1781, Bd. 37a. Felix Meiner, Hamburg (1956)

    Google Scholar 

  54. Kant, I.: Kritik der Reinen Vernunft. Riga 1978. In: Werke. (Akademiausgabe), hrsg. von Wilhelm Weischedel, Norbert Hinske. 6 Bde. Suhrkamp, Frankfurt am Main (1968)

    Google Scholar 

  55. Klir, G.J.: An Approach to General System Theory, p. 282. Van Nostrand, New York (1969)

    Google Scholar 

  56. Klix, F.: Information und Verhalten. VEB Deutscher Verlag der Wissenschaften, Berlin (1973)

    Google Scholar 

  57. Kolmogorov, A.N.: Foundation of Probability. Chelsea Publishing, New York (1950)

    Google Scholar 

  58. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Prob. Inform. Transm. 1, 1–7 (1965)

    Google Scholar 

  59. Kornwachs, K.: Technik impliziert ihre Verwendung. Bild der Wissenschaft, Heft 9, 120–121 (1980)

    Google Scholar 

  60. Kornwachs, K.: Function and information - towards a system-theoretical description of the use of products. Angewandte Systemanalyse 5(2), 73–83 (1984)

    Google Scholar 

  61. Kornwachs, K. (Hrsg.): Offenheit - Zeitlichkeit - Komplexität. Zur Theorie der offenen Systeme. Campus, Frankfurt (1984)

    Google Scholar 

  62. Kornwachs, K.: Utility and costs of information. A systematical approach to an information-cost-estimation. Angewandte Systemanalyse 5(3–4), 112–121 (1984)

    Google Scholar 

  63. Kornwachs, K.: Offene Systeme und die Frage nach der Information. Habilitation Thesis, University of Stuttgart (1987)

    Google Scholar 

  64. Kornwachs, K.: Complementarity and cognition. In: Carvallo, M.E. (ed.) Nature, Cognition and Systems, pp. 95–127. Kluwer, Amsterdam (1988)

    Chapter  Google Scholar 

  65. Kornwachs, K.: Information und der Begriff der Wirkung. In: Krönig, D., Lang, R. (Hrsg.) Physik und Informatik – Informatik und Physik. Informatik Fachberichte, Nr. 306, S. 46–56. Springer, Berlin (1991)

    Google Scholar 

  66. Kornwachs, K.: Pragmatic information and system surface. In: Kornwachs, K., Jacoby, K. (eds.) Information – New Questions to a Multidisciplinary Concept, pp. 163–185. Akademie, Berlin (1996)

    Google Scholar 

  67. Kornwachs, K.: Pragmatic information and the emergence of meaning. In: Van de Vijver, G., Salthe, S., Delpos, M. (eds.) Evolutionary Systems, pp. 181–196. Boston, Kluwer (1998)

    Chapter  Google Scholar 

  68. Kornwachs, K.: System ontology and descriptionism: Bertalanffy’s view and new developments. TripleC 2(1), 47–62 (2004)

    Google Scholar 

  69. Kornwachs, K.: Vulnerability of converging technologies – the example of ubiquitous computing. In: Banse, G., Hronszky, I. (eds.) Converging Technologies, pp. 55–88. Edition Sigma, Berlin (2007)

    Google Scholar 

  70. Kornwachs, K.: Nichtklassische Systeme und das Problem der Emergenz. In: Breuninger, R., et al. (Hrsg.) Selbstorganisation. 7. Ulmer Humboldt-Kolloquium. Bausteine der Philosophie Bd. 28, S. 181–231. Universitätsverlag, Ulm (2008)

    Google Scholar 

  71. Kornwachs, K., von Lucadou, W.: Komplexe Systeme. In: Kornwachs, K. (Hrsg.) Offenheit – Zeitlichkeit – Komplexität, pp. 110–165. Campus, Frankfurt (1984)

    Google Scholar 

  72. Kornwachs, K., von Lucadou, W.: Open systems and complexity. In: Dalenoort, G. (ed.) The Paradigm of Self Organization, pp. 123–145. Gordon & Breach, London (1989)

    Google Scholar 

  73. Kuhn, T.S.: Die Struktur wissenschaftlicher Revolution, 2nd edn. Suhrkamp, Frankfurt/Main (1973)

    Google Scholar 

  74. Küppers, B.-O.: Die Strukturwissenschaften als Bindeglied zwischen Natur- und Geisteswissenschaften. In: Küppers, B.-O. (Hrsg.) Die Einheit der Wirklichkeit – Zum Wissenschaftsverständnis der Gegenwart, S. 89–106. W. Fink, München (2000)

    Google Scholar 

  75. Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  76. Landau, L.D., Liefschitz, E.M.: Lehrbuch der Theoretischen Physik. Bd. III: Quantenmechanik. Akademie verlag, Berlin (Ost) (1967)

    Google Scholar 

  77. Lazlo, E., Margenau, H.: The emergence of integrative concepts in contemporary science. Philos. Sci. 39(2), 252–259 (1972)

    Article  Google Scholar 

  78. Leibniz, G.W.: Monadologie. In: Leibniz, G.W. (ed.) Hauptwerke. Hrsg. von G. Krüger, pp. 131–150. Kröner Verlag, Stuttgart (1958)

    Google Scholar 

  79. Lenk, H.: Wissenschaftstheorie und Systemtheorie. In: Lenk, H., Ropohl, G. (eds.) Systemtheorie als Wissenschaftsprogramm, S. 239–269. Athenäum-Verl., Königstein (1978)

    Google Scholar 

  80. Locke, M.: Grundlagen einer Theorie allgemeiner dynamischer Systeme. Akademie verlag, Berlin (Ost) (1984)

    Google Scholar 

  81. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  82. von Lucadou, W., Kornwachs, K.: The problem of reductionism from a system theoretical viewpoint - how to link Physics and Psychology. Zeitschrift für Allgemeine Wissenschaftstheorie XIV/2, 338–349 (1983)

    Google Scholar 

  83. Luhmann, N.: Soziale Systeme. Suhrkamp, Frankfurt/Main (1984)

    Google Scholar 

  84. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activities. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  85. Meixner, J.: Zur Thermodynamik der irreversiblen Prozesse. Zeitschrift für physikalische Chemie (B) 53, 235, 238–242 (1943)

    Google Scholar 

  86. Mesarovic, M.D.: A mathematical theory of general systems. In: Klir, G. (ed.) Trends in General System Theory, pp. 251–269. Wiley-Interscience, New York (1972)

    Google Scholar 

  87. Morin, K., Michalski, K., Rudolph, E. (eds.): Offene Systeme II – Logik und Zeit. Klett-Cotta, Stuttgart (1981)

    Google Scholar 

  88. von Neumann, J.: The general and logical theory of automata. In: Jeffers, L.A. (ed.) Cerebral Mechanism of the Behavior. Wiley, New York (1951). Dt.: Allgemeine und logische Theorie der Automaten. Übersetzt von D. Krönig. In: Kursbuch 8, März, pp. 139–192 (1967)

    Google Scholar 

  89. von Neumann, J.: The Computer and the Brain (8th printing). Yale University Press, New Haven (1974)

    Google Scholar 

  90. von Neumann, J., Morgenstern, 0.: Spieltheorie und wissenschaftliches Verhalten. Physica, Würzburg (1961)

    Google Scholar 

  91. Neumann, J.V.: In: Burks, A. (ed.) Theory of Self-Reproducing Automata. Urbana, London (1966)

    Google Scholar 

  92. Newell, A., Simon, H.A.: Human Problem Solving. Prentice Hall, Englewood Cliffs (1972)

    Google Scholar 

  93. Padulo, L., Arbib, M.A.: System Theory - A Unified State Space Approach to Continuous and Discrete Systems. Hemisphere Publ., Washington (1974)

    MATH  Google Scholar 

  94. Palm, G.: Neural Assemblies. Springer, Berlin (1981)

    Google Scholar 

  95. Parson, T.: The Social System. Free Press, New York (1957)

    Google Scholar 

  96. Penrose, R.: Computerdenken- die Debatte um Künstliche Intelligenz, Bewusstsein und die Gesetz der Physik. Spektrum, Heidelberg (1991)

    MATH  Google Scholar 

  97. Pontrjagin, L.S., Boltjanskij, V.G., Gamkrelidze, R.V., Miscenko, E.F.: Mathematische Theorie optionaler Prozesse. VEB Deutscher Verlag der Wissenschaften, Berlin (Ost) (1964)

    Google Scholar 

  98. Prigogine, J.: Vom Sein zum Werden. Piper, München (1979)

    Google Scholar 

  99. Röhrle, E.A.: Komplementarität und Erkenntnis. – von der Physik zur Philosophie. Lit, Münster (2000)

    Google Scholar 

  100. Ropohl, G.: Systemtheorie der Technik. Hanser, München (1979); 2nd edition: Allgemeine Technologie. Hanser, München (1999); 3rd edition: Karlsuher Universitätsverlag, Karlsruhe (2009)

    Google Scholar 

  101. Rosen, R.: Causal structures in brains and machines. Int. J. Gen. Syst. 12, 107–116 (1986)

    Article  Google Scholar 

  102. Schulz, R.: Systeme, biologische. In: Ritter, J., Gründer, K. (eds.) Historisches Wörterbuch der Philosophie, Bd. 10, pp. 856–862. Wiss. Buchgesellschaft, Darmstadt (1998)

    Google Scholar 

  103. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Urbana, Chicago, London (1949/1969). Deutsch: Mathematische Grundlagen der Informationstheorie. R. Oldenbourg, München (1976)

    Google Scholar 

  104. Strub, Ch.: System. II. System und Systemkritik in der Neuzeit. In: Ritter, J., Gründer, K. (eds.) (1984) Historisches Wörterbuch der Philosophie, Bd. 10, pp. 25–856. Wiss. Buchgesellschaft, Darmstadt (1998)

    Google Scholar 

  105. Thom, R.: Structural Stability and Morphogenetics. Benjamin, Reading (1975)

    Google Scholar 

  106. Weizenbaum, J.: Die Macht des Computers und die Ohnmacht der Vernunft. Suhrkamp, Frankfurt a.M. (1977)

    Google Scholar 

  107. von Weizsäcker, C.F.: Die Einheit der Natur, S. 352. Hanser Verlag, München (1971)

    Google Scholar 

  108. von Weizsäcker, E.U.: Erstmaligkeit und Bestätigung als Komponenten der Pragmatischen Information. In: von Weizsäcker, E.U. (Hrsg.) Offene Systeme I, S. 82–113. Klett, Stuttgart (1974)

    Google Scholar 

  109. Wiener, N.: Kybernetik – Regelung und Nachrichtenübertragung in Lebewesen und Maschinen. Rowohlt, Reinbeck, 1968 (1971), Econ Düsseldorf, Wien (1963), neue Auflage (1980)

    Google Scholar 

  110. Winston, P.H.: Artificial Intelligence, 3rd edn. Addison-Wesley, Reading (1992)

    Google Scholar 

  111. Wunsch, G.: Geschichte der Systemtheorie – Dynamische Systeme und Prozesse, Oldenbourg, München, Wien (1985)

    MATH  Google Scholar 

  112. Zahn, M.: System. In: Krings, H., Baumgartner, H.M., Wild, Ch. (eds.) Handbuch Philosophischer Grundbegriffe, Band 5, S. 1458–1475. Kösel Verlag, München (1974)

    Google Scholar 

  113. Zucker, H.F.: Information, Entropie, Komplementarität und Zeit. In: von Weizsäcker, E.U. (eds.) Offene Systeme I, S. 35–81. Klett, Stuttgart (1974)

    Google Scholar 

  114. Zucker, H.F.: Phenomenological Evidence and the “Ideal” of Physics. Working Paper, Max Planck Institut zur Erforschung der Lebensbedingungen, Starnberg, Probable (1978)

    Google Scholar 

Download references

Acknowledgments

This paper is based on a presentation, held at Philosophisches Kolloquium, December 3rd, 2008 at the Institute for Philosophy, University of Jena, Frege Centre for Structural Sciences. The inspiring discussions with Bernd-Olaf Küppers and Stefan Artmann are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Kornwachs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kornwachs, K. (2013). System Surfaces: There Is Never Just Only One Structure. In: Küppers, BO., Hahn, U., Artmann, S. (eds) Evolution of Semantic Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34997-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34997-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34996-6

  • Online ISBN: 978-3-642-34997-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics