Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 433 Accesses

Abstract

Colloidal suspensions are solutions containing small particles. These particles are larger than the molecules of the medium. They have a typical size ranging from several 10 nanometers to micrometers. They can be made from different materials and suspended in a wide variety of solvents. Colloidal dispersions have large application in our daily life, for instance, as cosmetics, advanced ceramics [1,2], coating [3], paints, and inks [4, 5]. Also, thin films of colloidal dispersions are confined to a solid substrate to manufacture advanced self-assembled materials such as photonic crystals [6–10], and sensors [11–12]. In addition, special colloids have biological applications, e.g. as pharmaceuticals, in drug delivery [13], and in food processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis, J. (2000). Journal of the American Ceramic Society, 83, 2341–2359.

    Article  Google Scholar 

  2. Tohver, V., Smay, J., Braem, A., Braun, P., & Lewis, J. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98, 8950–8954.

    Article  ADS  Google Scholar 

  3. Agarwal, N., & Farris, R. (2000). Polymer Engineering and Science, 40, 376–390.

    Article  Google Scholar 

  4. Chrisey, D. (2000). Science, 289, 879.

    Article  Google Scholar 

  5. Smay, J., Cesarano, J., & Lewis, J. (2002). Langmuir, 18, 5429–5437.

    Article  Google Scholar 

  6. Yablonovitcah, E. (1987). Physical Review Letters, 58, 2059–2062.

    Article  ADS  Google Scholar 

  7. Joannopoulos, J., Villeneuve, P., & Fan, S. (1997). Nature, 386, 143–149.

    Article  ADS  Google Scholar 

  8. Pan, G., Kesavamoorthy, R., & Asher, S. (1997). Physical Review Letters, 78, 3860–3863.

    Article  ADS  Google Scholar 

  9. Braun, P., & Wiltzius, P. (1999). Nature, 402, 603–604.

    Article  ADS  Google Scholar 

  10. Johnson, S., Ollivier, P., & Mallouk, T. (1999). Science, 283, 963–965.

    Article  ADS  Google Scholar 

  11. Tressler, J., Alkoy, S., Dogan, A., & Newnham, R. (1999). Composites Part A, 30, 477–482.

    Article  Google Scholar 

  12. Allahverdi, M., Danforth, S., Jafari, M., & Safari, A. (2001). Journal of the European Ceramic Society, 21, 1485–1490.

    Article  Google Scholar 

  13. Garnett, M. C., Stolnick, S., Dunn, S. E., Armstrong, I., Ling, W., Schacht, E., et al. (1999). Materials Research Society Bulletin, 24, 49–56.

    Google Scholar 

  14. Nikolov, A., & Wasan, D. (1989). Journal of Colloid and Interface Science, 133, 1–12.

    Article  Google Scholar 

  15. Wasan, D., & Nikolov, A. (2003). Nature, 423, 156–159.

    Article  ADS  Google Scholar 

  16. Basheva, E., Danov, K., & Kralchevsky, P. (1997). Langmuir, 13, 4342–4348.

    Article  Google Scholar 

  17. Sethumadhavan, G., Nikolov, A., & Wasan, D. (2001). Journal of Colloid and Interface Science, 240, 105–112.

    Article  Google Scholar 

  18. Denkov, N., Yoshimura, H., Nagayama, K., & Kouyama, T. (1996). Physical Review Letters, 76, 2354–2357.

    Article  ADS  Google Scholar 

  19. Sharma, A., & Walz, J. (1996). Journal of the Chemical Society, Faraday Transactions, 92, 4997–5004.

    Article  Google Scholar 

  20. Sharma, A., Tan, S., & Walz, J. (1997). Journal of Colloid and Interface Science, 191, 236–246.

    Article  Google Scholar 

  21. Piech, M., & Walz, J. (2002). Journal of Colloid and Interface Science, 253, 117–129.

    Article  Google Scholar 

  22. Piech, M., & Walz, J. (2004). Journal of Physical Chemistry B, 108, 9177–9188.

    Article  Google Scholar 

  23. McNamee, C., Tsujii, Y., Ohshima, H., & Matsumoto, M. (2004). Langmuir, 20, 1953–1962.

    Article  Google Scholar 

  24. Tulpar, A., Van Tassel, P., & Walz, J. (2006). Langmuir, 22, 2876–2883.

    Article  Google Scholar 

  25. Drelich, J., Long, J., Xu, Z., Masliyah, J., Nalaskowski, J., Beauchamp, R., et al. (2006). Journal of Colloid and Interface Science, 301, 511–522.

    Article  Google Scholar 

  26. Bergeron, V., & Radke, C. (1992). Langmuir, 8, 3020–3026.

    Article  Google Scholar 

  27. Bergeron, V., Jimenezlaguna, A., & Radke, C. (1992). Langmuir, 8, 3027–3032.

    Article  Google Scholar 

  28. Richetti, P., & Kekicheff, P. (1992). Physical Review Letters, 68, 1951–1954.

    Article  ADS  Google Scholar 

  29. Parker, J., Richetti, P., Kekicheff, P., & Sarman, S. (1992). Physical Review Letters, 68, 1955–1958.

    Article  ADS  Google Scholar 

  30. McNamee, C., Tsujii, Y., & Matsumoto, M. (2004). Langmuir, 20, 1791–1798.

    Article  Google Scholar 

  31. Nikolov, A., Kralchevsky, P., Ivanov, I., & Wasan, D. (1989). Journal of Colloid and Interface Science, 133, 13–22.

    Article  Google Scholar 

  32. Ducker, W., Senden, T., & Pashley, R. (1991). Nature, 353, 239–241.

    Article  ADS  Google Scholar 

  33. Butt, H. (1991). Biophysical Journal, 60, 1438–1444.

    Article  ADS  Google Scholar 

  34. Milling, A. (1996). Journal of Physical Chemistry, 100, 8986–8993.

    Article  Google Scholar 

  35. Biggs, S., Burns, J., Yan, Y., Jameson, G., & Jenkins, P. (2000). Langmuir, 16, 9242–9248.

    Article  Google Scholar 

  36. Biggs, S., Prieve, D., & Dagastine, R. (2005). Langmuir, 21, 5421–5428.

    Article  Google Scholar 

  37. Qu, D., Baigl, D., Williams, C., Mohwald, H., & Fery, A. (2003). Macromolecules, 36, 6878–6883.

    Article  ADS  Google Scholar 

  38. Qu, D., Pedersen, J. S., Garnier, S., Laschewsky, A., Moehwald, H., & von Klitzing, R. (2006). Macromolecules, 39, 7364–7371.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeng, Y. (2012). Introduction. In: Colloidal Dispersions Under Slit-Pore Confinement. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34991-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34991-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34990-4

  • Online ISBN: 978-3-642-34991-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics