Advertisement

Magnetic Nanoparticle Hyperthermia Treatment of Tumours

  • Chris BinnsEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 175)

Abstract

Magnetic nanoparticle hyperthermia (MNH) treatment of tumours is at an advanced stage of development, having been through phase I human clinical trials and currently being tested in phase II in combination with other therapies. There is some way to go in order to achieve its original promise as a stand-alone, symptom-free treatment, but recent developments in the synthesis of a new generation of magnetic nanoparticles with a very high heating performance have brought this closer. This chapter presents the general concept of MNH and describes the heating mechanisms and limitations of currently available ferrofluids. The potential of new nanoparticles to overcome these barriers is discussed.

Keywords

Magnetic Nanoparticles Anisotropy Constant High Intensity Focus Ultrasound Specific Absorption Rate Excitation Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.H. Breasted, in The Edwin Smith Surgical Papyrus, vol. 1 (University of Chicago, Chicago, 1930) Google Scholar
  2. 2.
    R.W. Rowe-Horwege, Systemic hyperthermia, in Encyclopedia of Medical Devices and Instrumentation, 2nd edn., ed. by J.G. Webster (Wiley, New York, 2006), pp. 42–62 Google Scholar
  3. 3.
    H.C. Nauts, Bacterial pyrogens: beneficial effects on cancer patients, in Biomedical Thermology, Progress in Clinical Biological Research, ed. by M. Gautherie, E. Albert (Alan R. Liss, New York, 1982), pp. 687–696 Google Scholar
  4. 4.
    P. Vaupel, F. Kallinowski, Physiological effects of hyperthermia. In: Hyperthermia and the Therapy of Malignant Tumors, ed. by C. Streffer (Springer, Berlin, 1987) Google Scholar
  5. 5.
    H. Gerad, D.A. van Echo, M. Whitacre, M. Ashman, M. Helrich, J. Foy, S. Ostrow, P.H. Wiernik, J. Aisner, Doxorubicin, cyclophosphamide, and whole body hyperthermia for treatment of advanced soft tissue sarcoma. Cancer 53, 2585–2591 (1984) CrossRefGoogle Scholar
  6. 6.
    R. Engelhardt, Summary of recent clinical experience in whole-body hyperthermia combined with chemotherapy—recent results. Cancer Res. 107, 200–224 (1988) Google Scholar
  7. 7.
    H.U. Ahmed, A. Freeman, A. Kirkham, M. Sahu, R. Scott, C. Allen, J. Van der Meulen, M. Emberton, Focal therapy for localized prostate cancer: a phase I/II trial. J. Urol. 185, 1246–1255 (2011) CrossRefGoogle Scholar
  8. 8.
    A.J. Fenn, Breast Cancer Treatment by Focused Microwave Thermotherapy, 1st edn. (Jones and Bartlett, Boston, 2006) Google Scholar
  9. 9.
    C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, R. Drezek, Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004) Google Scholar
  10. 10.
    X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photothermal therapy in the near infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006) CrossRefGoogle Scholar
  11. 11.
    N. Wong Shi Kam, M. O’Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. 102, 11601 (2005) Google Scholar
  12. 12.
    K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. von Deimling, N. Waldoefner, R. Felix, A. Jordan, Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neuro-Oncol. 81, 53–60 (2007) CrossRefGoogle Scholar
  13. 13.
    M. Johannsen, U. Gneveckow, M. Taymoorian, B. Thiesen, N. Waldoefner, R. Scholz, K. Jung, A. Jordan, P. Wust, S. Loening, Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int. J. Hyperth. 23, 315–323 (2007) CrossRefGoogle Scholar
  14. 14.
    B. Thiesen, A. Jordan, Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 24, 467–474 (2008) CrossRefGoogle Scholar
  15. 15.
    K. Maier-Hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust, B. Thiesen, H. Orawa, V. Budach, A. Jordan, Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 103, 317–324 (2011) CrossRefGoogle Scholar
  16. 16.
    N.A. Brusentsov, L.V. Nikitin, T.N. Brusentsova, A.A. Kuznetsov, F.S. Bayburtskiy, L.I. Shumakov, N.Y. Jurchenko, Magnetic fluid hyperthermia of the mouse experimental tumor. J. Magn. Magn. Mater. 252, 378–380 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    W.J. Atkinson, I.A. Brezovich, D.P. Chakraborty, Usable frequencies in hyperthermia with thermal seeds. IEEE Trans. Biomed. Eng. BME-31, 70 (1984) CrossRefGoogle Scholar
  18. 18.
    Q.A. Pankhurst, N.K.T. Thanh, S.K. Jones, J. Dobson, Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D 42, 224001 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    D. Fiorani, A.M. Testa, F. Lucari, F. D’Orazio, H. Romero, Magnetic properties of maghemite nanoparticle systems: surface anisotropy and interparticle interaction effects. Physica B 320, 122–126 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    C. Binns, M.J. Maher, Q.A. Pankhurst, D. Kechrakos, K.N. Trohidou, Magnetic behaviour of nanostructured films assembled from preformed Fe clusters embedded in Ag. Phys. Rev. B 66, 184413 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    A. Kleibert, J. Passig, K.-H. Meiwes-Broer, M. Getzlaff, J. Bansmann, Structure and magnetic moments of mass-filtered deposited nanoparticles. J. Appl. Phys. 101, 114318 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern, Q.A. Pankhurst, Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 321, 1509–1513 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    R. Hergt, S. Meffre, M. Röder, Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J. Phys. Condens. Matter 20, 385214 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    R. Hergt, S. Dutz, M. Zeisberger, Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology 21, 015706 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Fortin, F. Gazeau, C. Wilhelm, Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 37, 223–228 (2008) CrossRefGoogle Scholar
  27. 27.
    H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948) ADSGoogle Scholar
  28. 28.
    M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern, Q.A. Pankhurst, Suitability of commercial colloids for magnetic hyperthermia. J. Magn. Magn. Mater. 321, 1509–1513 (2009). Note: has incorrect correct values of the ILP of the colloids. For correct values see corrigendum by the same authors in J. Magn. Magn. Mater. 321, 3650–3651 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    R. Hergt, R. Hiergeist, M. Zeisberger, D. Schüler, U. Heyen, I. Hilger, W.A. Kaiser, Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J. Magn. Magn. Mater. 293, 80–86 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    R. Hergt, S. Dutz, R. Müller, M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter 18, S2919–S2934 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    H. Bönnemann, W. Brijoux, R. Brinkmann, N. Matoussevitch, N. Waldöfner, N. Palina, H. Modrow, A size-selective synthesis of air stable colloidal magnetic cobalt nanoparticles. Inorg. Chim. Acta 350, 617–624 (2003) CrossRefGoogle Scholar
  32. 32.
    B. Mehdaoui, A. Meffre, L.-M. Lacroix, J. Carrey, S. Lachaize, M. Gougeon, M. Respaud, B. Chaudret, Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J. Magn. Magn. Mater. 322, L49–L52 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    C. Binns, P. Prieto, S. Baker, P. Howes, R. Dondi, G. Burley, L. Lari, R. Kröger, A. Pratt, S. Aktas, J.K. Mellon, Preparation of hydrosol suspensions of elemental and core-shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions. J. Nanoparticle Res. 14, 1136 (2012) CrossRefGoogle Scholar
  34. 34.
    C. Binns, Nanoclusters deposited on surfaces. Surf. Sci. Rep. 44, 1–50 (2001) ADSCrossRefGoogle Scholar
  35. 35.
    C. Granqvist, L. Kish, W. Marlow (eds.), Gas Phase Nanoparticle Synthesis (Springer, Berlin, 2005), ISBN-13: 978-1402024436 Google Scholar
  36. 36.
    W. Bouwen, P. Thoen, F. Vanhoutte, S. Bouckaert, F. Despa, H. Weidele, R.E. Silverans, P. Lievens, Production of bimetallic clusters by a dual-target dual-laser vaporization source. Rev. Sci. Instrum. 71, 54–58 (2000) ADSCrossRefGoogle Scholar
  37. 37.
    A. Perez, P. Melinon, V. Dupuis, L. Bardotti, B. Masenelli, F. Tournus, B. Prevel, J. Tuaillon-Combes, E. Bernstein, A. Tamion, N. Blanc, D. Tainoff, O. Boisron, G. Guiraud, M. Broyer, M. Pellarin, N. Del Fatti, F. Vallee, E. Cottancin, J. Lerme, J.-L. Vialle, C. Bonnet, P. Maioli, A. Crut, C. Clavier, J.L. Rousset, F. Morfin, Functional nanostructures from clusters. Int. J. Nanotechnol. 7, 523–574 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    M. Getzlaff, A. Kleibert, R. Methling, J. Bansmann, K.-H. Meiwes-Broer, Mass-filtered ferromagnetic alloy clusters on surfaces. Surf. Sci. 566–568, 332–336 (2004) CrossRefGoogle Scholar
  39. 39.
    S.H. Baker, M. Roy, M. Qureshi, C. Binns, Probing atomic structure in magnetic core/shell nanoparticles using synchrotron radiation. J. Phys. Condens. Matter 22, 385301 (2010) ADSCrossRefGoogle Scholar
  40. 40.
    S.H. Baker, S.C. Thornton, K.W. Edmonds, M.J. Maher, C. Norris, C. Binns, Characterisation of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters. Rev. Sci. Instrum. 71, 3178 (2000) ADSCrossRefGoogle Scholar
  41. 41.
    G.N. Iles, S.H. Baker, S.C. Thornton, C. Binns, Enhanced capability in a gas aggregation source for magnetic nanoparticles. J. Appl. Phys. 105, 024306 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    A. Kouchi, Vapour pressure of amorphous ice and its astrophysical implications. Nature 330, 550 (1987) ADSCrossRefGoogle Scholar
  43. 43.
    A. Pratt, private communication. Department of Physics, University of York, January 2012 Google Scholar
  44. 44.
    J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.-C. Bacri, F. Gazeau, Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628–2635 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK

Personalised recommendations