Skip to main content

Half-Metallic and Magnetic Silicon Nanowires Functionalized by Transition-Metal Atoms

  • Chapter
Nanostructured Materials for Magnetoelectronics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 175))

Abstract

In this paper we investigate the atomic structure and the mechanical, electronic, and magnetic properties of silicon nanowires (SiNWs) using first-principles plane wave calculations within density functional theory. We examined hydrogen-passivated SiNWs along the [001] direction and studied doping of 3d transition-metal (TM) atoms. Nanowires of different sizes are initially cut from the bulk silicon crystal in rod-like forms, and subsequently their atomic structures are relaxed before and also after the termination of surface dangling bonds by hydrogen atoms. We have first presented an extensive analysis of the atomic structure, stability, and the elastic and electronic properties of bare and hydrogen-terminated SiNWs. The energetics of adsorption and the resulting electronic and magnetic properties are examined for different levels of 3d TM atom coverage. Adsorption of TM atoms generally results in the magnetic ground state. The net magnetic moment increases with increasing coverage. While specific SiNWs acquire half-metallic behavior at low coverage, at high coverage ferromagnetic nanowires become metallic for both spin directions, and some of them have very high spin polarization at the Fermi level. Our results suggest that electronic and spintronic devices with conducting interconnects between them can be fabricated on a single SiNW at a desired order. We believe that our study will initiate new research on spintronic applications of SiNWs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Numerous theoretical studies on SiNW have been published in recent years. See for example: [21, 22].

  2. 2.

    Numerical computations have been carried out by using VASP software [36, 37].

  3. 3.

    Charge transfer, orbital hybridization, and local magnetic moments have been obtained from SIESTA code using local basis set [38].

References

  1. S. Tongay, R.T. Senger, S. Dag, S. Ciraci, Phys. Rev. Lett. 93, 136404 (2004)

    Article  ADS  Google Scholar 

  2. S. Tongay, S. Dag, E. Durgun, R.T. Senger, S. Ciraci, J. Phys. Condens. Matter 17, 3823 (2005)

    Article  ADS  Google Scholar 

  3. R.T. Senger, S. Tongay, S. Dag, E. Durgun, S. Ciraci, Phys. Rev. B 71, 235406 (2005), and references therein

    Article  ADS  Google Scholar 

  4. P. Sen, O. Gulseren, T. Yildirim, I.P. Batra, S. Ciraci, Phys. Rev. B 65, 235433 (2002)

    Article  ADS  Google Scholar 

  5. E. Durgun, S. Tongay, S. Ciraci, Phys. Rev. B 72, 075420 (2005)

    Article  ADS  Google Scholar 

  6. D.P. Yu, C.S. Lee, I. Bello, X.S. Sun, Y.H. Tang, G.W. Zhou, Z.G. Bai, Z. Zhang, S.Q. Feng, Solid State Commun. 105, 403 (1998)

    Article  ADS  Google Scholar 

  7. J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)

    Article  Google Scholar 

  8. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)

    Article  ADS  Google Scholar 

  9. W.Q. Han, S.S. Fan, Q.Q. Li, Y.D. Hu, Science 277, 1278 (1997)

    Article  Google Scholar 

  10. C.R. Martin, Science 266, 1961 (1994)

    Article  ADS  Google Scholar 

  11. Y.F. Zhang, L.S. Liao, W.H. Chan, S.T. Lee, R. Sammynaiken, T.K. Sham, Phys. Rev. B 61, 8298 (2000)

    Article  ADS  Google Scholar 

  12. D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Science 299, 1874 (2003)

    Article  ADS  Google Scholar 

  13. M. Menon, E. Richter, Phys. Rev. Lett. 83, 792 (1999)

    Article  ADS  Google Scholar 

  14. B. Marsen, K. Sattler, Phys. Rev. B 60, 11593 (1999)

    Article  ADS  Google Scholar 

  15. J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Science 287, 1471 (2000)

    Article  ADS  Google Scholar 

  16. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Nano Lett. 4, 433 (2004)

    Article  ADS  Google Scholar 

  17. R. Rurali, N. Lorente, Phys. Rev. Lett. 94, 026805 (2005)

    Article  ADS  Google Scholar 

  18. R.Q. Zhang, Y. Lifshitz, D.D.D. Ma, Y.L. Zhao, Th. Frauenheim, S.T. Lee, S.Y. Tong, J. Chem. Phys. 123, 144703 (2005)

    Article  ADS  Google Scholar 

  19. E. Durgun, D. Cakir, N. Akman, S. Ciraci, Phys. Rev. Lett. 99, 256806 (2007)

    Article  ADS  Google Scholar 

  20. A.K. Singh, V. Kumar, R. Note, Y. Kawazoe, Nano Lett. 6, 920 (2006)

    Article  ADS  Google Scholar 

  21. Q. Wang, Q. Sun, P. Jena, Phys. Rev. Lett. 95, 167202 (2005)

    Article  ADS  Google Scholar 

  22. Q. Wang, Q. Sun, P. Jena, Nano Lett. 5, 1587 (2005)

    Article  ADS  Google Scholar 

  23. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149 (2003)

    Article  ADS  Google Scholar 

  24. Y. Huang, X. Duan, C.M. Lieber, Small 1, 142 (2005)

    Article  Google Scholar 

  25. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature (London) 421, 241 (2003)

    Article  ADS  Google Scholar 

  26. M.V. Fernandez-Serra, Ch. Adessi, X. Blase, Phys. Rev. Lett. 96, 166805 (2006)

    Article  ADS  Google Scholar 

  27. E. Durgun, N. Akman, C. Ataca, S. Ciraci, Phys. Rev. B 76, 245323 (2007)

    Article  ADS  Google Scholar 

  28. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001)

    Article  ADS  Google Scholar 

  29. X.T. Zhou, J.Q. Hu, C.P. Li, D.D.D. Ma, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 369, 220 (2003)

    Article  ADS  Google Scholar 

  30. J. Hahm, C.M. Lieber, Nano Lett. 4, 51 (2004)

    Article  ADS  Google Scholar 

  31. N. Akman, E. Durgun, S. Cahangirov, S. Ciraci, Phys. Rev. B 76, 245427 (2007)

    Article  ADS  Google Scholar 

  32. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  33. W.E. Pickett, J.S. Moodera, Phys. Today 54, 39 (2001)

    Article  ADS  Google Scholar 

  34. H.W. Wu, C.J. Tsai, L.J. Chen, Appl. Phys. Lett. 90, 043121 (2007)

    Article  ADS  Google Scholar 

  35. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    Article  ADS  Google Scholar 

  36. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  37. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  38. P. Ordejon, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996)

    Article  ADS  Google Scholar 

  39. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  40. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  41. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  42. P.E. Blochl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  43. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  44. M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989)

    Article  ADS  Google Scholar 

  45. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  46. S. Ismail-Beigi, T. Arias, Phys. Rev. B 57, 11923 (1998)

    Article  ADS  Google Scholar 

  47. J.X. Cao, X.G. Gong, J.X. Zhong, R.Q. Wu, Phys. Rev. Lett. 97, 136105 (2006)

    Article  ADS  Google Scholar 

  48. R. Rurali, A. Poissier, N. Lorente, Phys. Rev. B 74, 165324 (2006)

    Article  ADS  Google Scholar 

  49. E. Durgun, S. Dag, V.M.K. Bagci, O. Gulseren, T. Yildirim, S. Ciraci, Phys. Rev. B 67, 201401(R) (2003)

    Article  ADS  Google Scholar 

  50. E. Durgun, S. Dag, V.M.K. Bagci, O. Gulseren, T. Yildirim, S. Ciraci, J. Phys. Chem. B 108, 575 (2004)

    Article  Google Scholar 

  51. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, T. Venkatesan, Nature (London) 392, 794 (1998)

    Article  ADS  Google Scholar 

  52. H. Akinaga, T. Manago, M. Shirai, Jpn. J. Appl. Phys. 2(39), L1118 (2000)

    Article  ADS  Google Scholar 

  53. M.C. Qian, C.Y. Fong, K. Liu, W.E. Pickett, J.E. Pask, L.H. Yang, Phys. Rev. Lett. 96, 027211 (2006)

    Article  ADS  Google Scholar 

  54. Y.-W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  55. C.-K. Yang, J. Zhao, J.P. Lu, Nano Lett. 4, 561 (2004)

    Article  ADS  Google Scholar 

  56. Y. Yagi, T.M. Briere, M.H.F. Sluiter, V. Kumar, A.A. Farajian, Y. Kawazoe, Phys. Rev. B 69, 075414 (2004)

    Article  ADS  Google Scholar 

  57. S. Dag, S. Tongay, T. Yildirim, E. Durgun, R.T. Senger, C.Y. Fong, S. Ciraci, Phys. Rev. B 72, 155444 (2005)

    Article  ADS  Google Scholar 

  58. E. Durgun, D.I. Bilc, S. Ciraci, Ph. Ghosez, J. Phys. Chem. C 116, 15713 (2012)

    Article  Google Scholar 

  59. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by TUBITAK under Grant No. TBAG-104T536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Ciraci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Durgun, E., Ciraci, S. (2013). Half-Metallic and Magnetic Silicon Nanowires Functionalized by Transition-Metal Atoms. In: AktaÅŸ, B., Mikailzade, F. (eds) Nanostructured Materials for Magnetoelectronics. Springer Series in Materials Science, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34958-4_6

Download citation

Publish with us

Policies and ethics