Advertisement

Half-Metallic and Magnetic Silicon Nanowires Functionalized by Transition-Metal Atoms

  • Engin Durgun
  • Salim CiraciEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 175)

Abstract

In this paper we investigate the atomic structure and the mechanical, electronic, and magnetic properties of silicon nanowires (SiNWs) using first-principles plane wave calculations within density functional theory. We examined hydrogen-passivated SiNWs along the [001] direction and studied doping of 3d transition-metal (TM) atoms. Nanowires of different sizes are initially cut from the bulk silicon crystal in rod-like forms, and subsequently their atomic structures are relaxed before and also after the termination of surface dangling bonds by hydrogen atoms. We have first presented an extensive analysis of the atomic structure, stability, and the elastic and electronic properties of bare and hydrogen-terminated SiNWs. The energetics of adsorption and the resulting electronic and magnetic properties are examined for different levels of 3d TM atom coverage. Adsorption of TM atoms generally results in the magnetic ground state. The net magnetic moment increases with increasing coverage. While specific SiNWs acquire half-metallic behavior at low coverage, at high coverage ferromagnetic nanowires become metallic for both spin directions, and some of them have very high spin polarization at the Fermi level. Our results suggest that electronic and spintronic devices with conducting interconnects between them can be fabricated on a single SiNW at a desired order. We believe that our study will initiate new research on spintronic applications of SiNWs.

Keywords

Spin Polarization Silicon Nanowires Spin Direction Ferromagnetic Semiconductor Round Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been partially supported by TUBITAK under Grant No. TBAG-104T536.

References

  1. 1.
    S. Tongay, R.T. Senger, S. Dag, S. Ciraci, Phys. Rev. Lett. 93, 136404 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    S. Tongay, S. Dag, E. Durgun, R.T. Senger, S. Ciraci, J. Phys. Condens. Matter 17, 3823 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    R.T. Senger, S. Tongay, S. Dag, E. Durgun, S. Ciraci, Phys. Rev. B 71, 235406 (2005), and references therein ADSCrossRefGoogle Scholar
  4. 4.
    P. Sen, O. Gulseren, T. Yildirim, I.P. Batra, S. Ciraci, Phys. Rev. B 65, 235433 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    E. Durgun, S. Tongay, S. Ciraci, Phys. Rev. B 72, 075420 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    D.P. Yu, C.S. Lee, I. Bello, X.S. Sun, Y.H. Tang, G.W. Zhou, Z.G. Bai, Z. Zhang, S.Q. Feng, Solid State Commun. 105, 403 (1998) ADSCrossRefGoogle Scholar
  7. 7.
    J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999) CrossRefGoogle Scholar
  8. 8.
    K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakibayashi, J. Appl. Phys. 77, 447 (1995) ADSCrossRefGoogle Scholar
  9. 9.
    W.Q. Han, S.S. Fan, Q.Q. Li, Y.D. Hu, Science 277, 1278 (1997) CrossRefGoogle Scholar
  10. 10.
    C.R. Martin, Science 266, 1961 (1994) ADSCrossRefGoogle Scholar
  11. 11.
    Y.F. Zhang, L.S. Liao, W.H. Chan, S.T. Lee, R. Sammynaiken, T.K. Sham, Phys. Rev. B 61, 8298 (2000) ADSCrossRefGoogle Scholar
  12. 12.
    D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Science 299, 1874 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    M. Menon, E. Richter, Phys. Rev. Lett. 83, 792 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    B. Marsen, K. Sattler, Phys. Rev. B 60, 11593 (1999) ADSCrossRefGoogle Scholar
  15. 15.
    J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Science 287, 1471 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Nano Lett. 4, 433 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    R. Rurali, N. Lorente, Phys. Rev. Lett. 94, 026805 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    R.Q. Zhang, Y. Lifshitz, D.D.D. Ma, Y.L. Zhao, Th. Frauenheim, S.T. Lee, S.Y. Tong, J. Chem. Phys. 123, 144703 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    E. Durgun, D. Cakir, N. Akman, S. Ciraci, Phys. Rev. Lett. 99, 256806 (2007) ADSCrossRefGoogle Scholar
  20. 20.
    A.K. Singh, V. Kumar, R. Note, Y. Kawazoe, Nano Lett. 6, 920 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    Q. Wang, Q. Sun, P. Jena, Phys. Rev. Lett. 95, 167202 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    Q. Wang, Q. Sun, P. Jena, Nano Lett. 5, 1587 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    Y. Huang, X. Duan, C.M. Lieber, Small 1, 142 (2005) CrossRefGoogle Scholar
  25. 25.
    X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature (London) 421, 241 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    M.V. Fernandez-Serra, Ch. Adessi, X. Blase, Phys. Rev. Lett. 96, 166805 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    E. Durgun, N. Akman, C. Ataca, S. Ciraci, Phys. Rev. B 76, 245323 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001) ADSCrossRefGoogle Scholar
  29. 29.
    X.T. Zhou, J.Q. Hu, C.P. Li, D.D.D. Ma, C.S. Lee, S.T. Lee, Chem. Phys. Lett. 369, 220 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    J. Hahm, C.M. Lieber, Nano Lett. 4, 51 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    N. Akman, E. Durgun, S. Cahangirov, S. Ciraci, Phys. Rev. B 76, 245427 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983) ADSCrossRefGoogle Scholar
  33. 33.
    W.E. Pickett, J.S. Moodera, Phys. Today 54, 39 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    H.W. Wu, C.J. Tsai, L.J. Chen, Appl. Phys. Lett. 90, 043121 (2007) ADSCrossRefGoogle Scholar
  35. 35.
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992) ADSCrossRefGoogle Scholar
  36. 36.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) ADSCrossRefGoogle Scholar
  37. 37.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996) ADSCrossRefGoogle Scholar
  38. 38.
    P. Ordejon, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996) ADSCrossRefGoogle Scholar
  39. 39.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990) ADSCrossRefGoogle Scholar
  42. 42.
    P.E. Blochl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  43. 43.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992) ADSCrossRefGoogle Scholar
  44. 44.
    M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989) ADSCrossRefGoogle Scholar
  45. 45.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    S. Ismail-Beigi, T. Arias, Phys. Rev. B 57, 11923 (1998) ADSCrossRefGoogle Scholar
  47. 47.
    J.X. Cao, X.G. Gong, J.X. Zhong, R.Q. Wu, Phys. Rev. Lett. 97, 136105 (2006) ADSCrossRefGoogle Scholar
  48. 48.
    R. Rurali, A. Poissier, N. Lorente, Phys. Rev. B 74, 165324 (2006) ADSCrossRefGoogle Scholar
  49. 49.
    E. Durgun, S. Dag, V.M.K. Bagci, O. Gulseren, T. Yildirim, S. Ciraci, Phys. Rev. B 67, 201401(R) (2003) ADSCrossRefGoogle Scholar
  50. 50.
    E. Durgun, S. Dag, V.M.K. Bagci, O. Gulseren, T. Yildirim, S. Ciraci, J. Phys. Chem. B 108, 575 (2004) CrossRefGoogle Scholar
  51. 51.
    J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, T. Venkatesan, Nature (London) 392, 794 (1998) ADSCrossRefGoogle Scholar
  52. 52.
    H. Akinaga, T. Manago, M. Shirai, Jpn. J. Appl. Phys. 2(39), L1118 (2000) ADSCrossRefGoogle Scholar
  53. 53.
    M.C. Qian, C.Y. Fong, K. Liu, W.E. Pickett, J.E. Pask, L.H. Yang, Phys. Rev. Lett. 96, 027211 (2006) ADSCrossRefGoogle Scholar
  54. 54.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006) ADSCrossRefGoogle Scholar
  55. 55.
    C.-K. Yang, J. Zhao, J.P. Lu, Nano Lett. 4, 561 (2004) ADSCrossRefGoogle Scholar
  56. 56.
    Y. Yagi, T.M. Briere, M.H.F. Sluiter, V. Kumar, A.A. Farajian, Y. Kawazoe, Phys. Rev. B 69, 075414 (2004) ADSCrossRefGoogle Scholar
  57. 57.
    S. Dag, S. Tongay, T. Yildirim, E. Durgun, R.T. Senger, C.Y. Fong, S. Ciraci, Phys. Rev. B 72, 155444 (2005) ADSCrossRefGoogle Scholar
  58. 58.
    E. Durgun, D.I. Bilc, S. Ciraci, Ph. Ghosez, J. Phys. Chem. C 116, 15713 (2012) CrossRefGoogle Scholar
  59. 59.
    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.UNAM-Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey
  2. 2.Department of PhysicsBilkent UniversityAnkaraTurkey

Personalised recommendations