Advertisement

Magnetic Characterization of Exchange Coupled Ultrathin Magnetic Multilayers by Ferromagnetic Resonance Technique

  • Bekir AktaşEmail author
  • Ramazan Topkaya
  • Mustafa Erkovan
  • Mustafa Özdemir
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 175)

Abstract

The magnetic–nonmagnetic multilayers have been widely used in various applications. As well known the important physical parameters depend on relevant applications. For giant magneto resistance (GMR), magnetic data storage, MRAM and spintronics applications, the most important magnetic parameters in multilayered structures are interlayer exchange coupling, magnetic anisotropy, saturation magnetization and spin relaxation time. All of these parameters strictly depend on the physical size of the elements which are continuously shrinking even down to nanometer scale for ultra high density data processes. However, as the dimensions (thickness) of the films continues to decrease the magnetic signal intensity gets so weak that its detection becomes one of the major issues. But still ferromagnetic resonance (FMR) can be powerful enough to study these multilayered structures.

Recently we have developed a theoretical model to analyse the FMR data to extract magnetic parameters. We have chosen the permalloy (Py) layers separated by very thin Cr for our study because Py is one of the softest magnetic materials and its bulk form is very well characterized. The FMR measurements were carried out by using an X-band ESR spectrometer at several temperatures. The experimental data was successfully simulated by proposed model. The saturation magnetization was observed close to the value that for bulk permalloy. However a significant perpendicular anisotropy induced for thin film case. The spectra strongly depend on the thickness of Cr layer. Even the relative positions of the strong and the weak modes are interchanged for particular thickness of Cr layer. It has been found that the exchange coupling between successive layers exhibits oscillatory behaviour with respect to Cr thickness, confirming usefulness of the developed FMR model.

Keywords

Magnetic Layer Resonance Field Ferromagnetic Layer Space Thickness Magnetic Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partly supported by the Ministry of Industry and Trade of TURKEY (Project No. 00185.STZ.2007-2), the State Planning Organization of Turkey (DPT-Project No. 2009K120730), and Marmara University (BAPKO Project No. FEN-KPS-100105-0073). We gratefully acknowledge that all samples used in this study were grown at Nanotechnology Center of Gebze Institute of Technology.

References

  1. 1.
    M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989) ADSCrossRefGoogle Scholar
  3. 3.
    T. Miyazaki, N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995) ADSGoogle Scholar
  4. 4.
    J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 16 (1995) CrossRefGoogle Scholar
  5. 5.
    P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Phys. Rev. Lett. 57, 2442 (1986) ADSCrossRefGoogle Scholar
  6. 6.
    S.S.P. Parkin, D. Mauri, Phys. Rev. B 44, 7131 (1991) ADSCrossRefGoogle Scholar
  7. 7.
    S.S.P. Parkin, N. More, K.P. Roche, Phys. Rev. Lett. 64, 2304 (1990) ADSCrossRefGoogle Scholar
  8. 8.
    S.S.P. Parkin, R.F.C. Farrow, R.F. Marks, A. Cebollada, G.R. Harp, R.J. Savoy, Phys. Rev. Lett. 72, 3718 (1994) ADSCrossRefGoogle Scholar
  9. 9.
    S.S.P. Parkin, R. Bhadra, K.P. Roche, Phys. Rev. Lett. 66, 2552 (1991) ADSCrossRefGoogle Scholar
  10. 10.
    S.S.P. Parkin, Phys. Rev. Lett. 67, 3598 (1991) ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954) ADSCrossRefGoogle Scholar
  12. 12.
    T. Kasuya, Prog. Theor. Phys. 12, 45 (1956) ADSCrossRefGoogle Scholar
  13. 13.
    K. Yosida, Phys. Rev. 106, 893 (1957) ADSCrossRefGoogle Scholar
  14. 14.
    S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, M. Samant, Proc. IEEE 91(5) (2003) Google Scholar
  15. 15.
    B. Heinrich, Z. Celinski, J.F. Cochran, W.B. Muir, J. Rudd, Q.M. Zhong, A.S. Arrott, K. Myrtle, J. Kirschner, Phys. Rev. Lett. 64, 673 (1990) ADSCrossRefGoogle Scholar
  16. 16.
    J.J. de Vries, W.J.M. De Jonge, M.T. Jhonson, J. de Stegge, A. Reinders, J. Appl. Phys. 75, 6440 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    M. Belmeguenai, T. Martin, G. Woltersdorf, G. Bayreuther, V. Baltz, A.K. Suszka, B.J. Hickey, J. Phys. Condens. Matter 20, 345206 (2008) CrossRefGoogle Scholar
  18. 18.
    C. Kittel, Phys. Rev. 73, 2 (1948) Google Scholar
  19. 19.
    F.T. Rado, J.R. Weertman, Phys. Rev. 94, 1386 (1954) ADSCrossRefGoogle Scholar
  20. 20.
    W.S. Ament, G.T. Rado, Phys. Rev. 97, 6 (1955) CrossRefGoogle Scholar
  21. 21.
    C. Kittel, Phys. Rev. 110, 1295–1297 (1958) MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Z. Frait, H. Macfaden, Phys. Rev. 139, A1173–A1180 (1965) ADSCrossRefGoogle Scholar
  23. 23.
    H. Hurdequint, J.S. Kouvel, H. Monod, J. Appl. Phys. 53, 2239 (1982) ADSCrossRefGoogle Scholar
  24. 24.
    Y. Öner, B. Aktaş, F. Apaydin, E.A. Harris, Physica B 37, 10 (1988) Google Scholar
  25. 25.
    B. Aktas, Y. Oner, E.A. Harris, Phys. Rev. B 39, 1 (1989) CrossRefGoogle Scholar
  26. 26.
    B. Aktas, Solid State Commun. 87, 11 (1993) CrossRefGoogle Scholar
  27. 27.
    P.E. Tannenwald, M.H. Seavey, Phys. Rev. 105, 377–378 (1957) ADSCrossRefGoogle Scholar
  28. 28.
    P.E. Wigen, C.F. Kooi, M.R. Shanabarger, T.D. Rossing, Phys. Rev. Lett. 9, 206–208 (1962) ADSCrossRefGoogle Scholar
  29. 29.
    R.F. Soohoo, Phys. Rev. 131, 594 (1963) ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    A.M. Portis, Appl. Phys. Lett. 2, 69–71 (1963) ADSCrossRefGoogle Scholar
  31. 31.
    P.E. Wigen, R.A. Turk, J.T. Yu, Phys. Rev. Lett. 11, 420 (1975) Google Scholar
  32. 32.
    H. Puszkarski, Prog. Surf. Sci. 9, 191–247 (1979) ADSCrossRefGoogle Scholar
  33. 33.
    L.J. Maksymowich, D. Sendorek, R. Zuberk, J. Magn. Magn. Mater. 37, 177 (1983) ADSCrossRefGoogle Scholar
  34. 34.
    P.E. Wigen, Thin Solid Films 114, 135 (1984) ADSCrossRefGoogle Scholar
  35. 35.
    B. Aktas, M. Ozdemir, Physica B 193, 125–138 (1994) ADSCrossRefGoogle Scholar
  36. 36.
    B. Aktaş, B. Heinrich, G. Woltersdorf, R. Urban, L.R. Tagirov, F. Yildiz, K. Özdoğan, M. Özdemir, O. Yalçin, B.Z. Rameev, J. Appl. Phys. 102, 013912 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    B. Aktaş, B. Aktaş, B. Heinrich, G. Woltersdorf, R. Urban, L.R. Tagirov, F. Yildiz, K. Özdoğan, M. Özdemir, O. Yalçin, B.Z. Rameev, in Magnetic Nanostructures, ed. by B. Aktaş, L. Tagirov, F. Mikailov. Springer Series in Material Science (2007), pp. 167–184 CrossRefGoogle Scholar
  38. 38.
    Z. Zhang, Ferromagnetic resonance study in exchange coupled magnetic/non-magnetic multilayer structures. PhD Thesis, The Ohio State University, 1994 Google Scholar
  39. 39.
    Z. Zang, L. Zhou, P.E. Wigen, K. Ounadjela, Phys. Rev. Lett. 73, 336 (1994) ADSCrossRefGoogle Scholar
  40. 40.
    R. Topkaya, M. Erkovan, A. Öztürk, O. Öztürk, M. Özdemir, B. Aktaş, J. Appl. Phys. 108, 023910 (2010) ADSCrossRefGoogle Scholar
  41. 41.
    M. Erkovan, S.T. Öztürk, R. Topkaya, B. Aktas, M. Özdemir, O. Öztürk, J. Appl. Phys. 110, 023908 (2011) ADSCrossRefGoogle Scholar
  42. 42.
    B.Z. Rameev, A. Gupta, F. Yıldı z, L.R. Tagirov, B. Aktas, J. Magn. Magn. Mater. 300, e526–e529 (2006) ADSCrossRefGoogle Scholar
  43. 43.
    T.G. Altincekic, İ. Boz, A. Baykal, S. Kazan, R. Topkaya, M.S. Toprak, J. Alloys Compd. 493, 1–2 (2010) CrossRefGoogle Scholar
  44. 44.
    R. Sahingoz, M. Erol, S. Yilmaz, S. Kazan, R. Topkaya, J. Optoelectron. Adv. Mater. 4, 4 (2010) Google Scholar
  45. 45.
    A.R. Köymen, L.R. Tagirov, R.T. Gilmutdinov, C. Topacli, C. Birlikseven, H.Z. Durusoy, B. Aktaş, IEEE Trans. Magn. 34, 846 (1998) ADSCrossRefGoogle Scholar
  46. 46.
    G. Kartopu, O. Yalcin, K.L. Choy, R. Topkaya, S. Kazan, B. Aktas, J. Appl. Phys. 109, 3 (2011) CrossRefGoogle Scholar
  47. 47.
    M. Farle, Rep. Prog. Phys. 61, 755 (1998) ADSCrossRefGoogle Scholar
  48. 48.
    Z. Celinski, K.B. Urquhart, B. Heinrich, J. Magn. Magn. Mater. 166, 6 (1997) ADSCrossRefGoogle Scholar
  49. 49.
    S. Dursun, R. Topkaya, N. Akdoğan, S. Alkoy, Ceram. Int. 38, 5 (2012) CrossRefGoogle Scholar
  50. 50.
    C. Peng, C. Dai, D. Dai, J. Appl. Phys. 72, 4250 (1992) ADSCrossRefGoogle Scholar
  51. 51.
    S.M. Rezende, C. Chesman, M.A. Lucena, A. Azevedo, F.M. de Aguiar, S.S.P. Parkin, J. Appl. Phys. 84, 958 (1998) ADSCrossRefGoogle Scholar
  52. 52.
    S. Tanuma, C.S. Powell, D.R. Penn, Surf. Sci. 192, L849 (1987) CrossRefGoogle Scholar
  53. 53.
    A. Fert, A. Barthelemy, P. Lequien, R. Loloee, D.K. Lottis, D.H. Mosca, F. Petroff, W.P. Pratt, P.A. Schroeder, J. Magn. Magn. Mater. 104, 1712 (1992) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bekir Aktaş
    • 1
    Email author
  • Ramazan Topkaya
    • 1
  • Mustafa Erkovan
    • 1
  • Mustafa Özdemir
    • 2
  1. 1.Department of PhysicsGebze Institute of TechnologyGebze-KocaeliTurkey
  2. 2.Department of Physics, Faculty of Science and LettersMarmara UniversityIstanbulTurkey

Personalised recommendations