Skip to main content

Opto-Mechanics in the Strong Coupling Regime

  • Chapter
  • First Online:
Quantum Opto-Mechanics with Micromirrors

Part of the book series: Springer Theses ((Springer Theses))

  • 1295 Accesses

Abstract

Full coherent quantum control over optomechanical systems is one of the main outstanding goals in the young research field of cavity opto-mechanics. While the progress towards low-entropy states was tremendous in recent years (including the cooling experiments presented in Chap. 5), the second necessary condition for most quantum

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Bose, K. Jacobs, P.L. Knight, Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175 (1997)

    Google Scholar 

  2. W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    Google Scholar 

  3. D. Vitali, S. Gigan, A. Ferreira, H.R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Google Scholar 

  4. A.A. Clerk, F. Marquardt, K. Jacobs, Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J. Phys. 10, 095010 (2008)

    Google Scholar 

  5. F. Marquardt, J.P. Chen, A.A. Clerk, S.M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Google Scholar 

  6. J.M. Dobrindt, I. Wilson-Rae, T.J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    Google Scholar 

  7. J.D. Teufel, T. Donner, D. Li, J.H. Harlow, M.S. Allman, K. Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert, R.W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359 (2011)

    Google Scholar 

  8. S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006)

    Google Scholar 

  9. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71 (2006)

    Google Scholar 

  10. A. Schliesser, P. Del’Haye, N. Nooshi, K.J. Vahala, T.J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006)

    Google Scholar 

  11. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, N. Mavalvala, Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007)

    Google Scholar 

  12. J.D. Thompson, B.M. Zwickl, A.M. Jayich, F. Marquardt, S.M. Girvin, J.G.E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72 (2008)

    Google Scholar 

  13. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, T.J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415 (2008)

    Google Scholar 

  14. G. Anetsberger, O. Arcizet, Q.P. Unterreithmeier, R. Rivière, A. Schliesser, E.M. Weig, J.P. Kotthaus, T.J. Kippenberg, Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys. 5, 909 (2009)

    Google Scholar 

  15. S. Gröblacher, J.B. Hertzberg, M.R. Vanner, S. Gigan, K.C. Schwab, M. Aspelmeyer, Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nat. Phys. 5, 485 (2009)

    Google Scholar 

  16. M. Eichenfield, R. Camacho, J. Chan, K.J. Vahala, O. Painter, A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550 (2009)

    Google Scholar 

  17. S. Gröblacher, K. Hammerer, M.R. Vanner, M. Aspelmeyer, Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724 (2009)

    Google Scholar 

  18. M. Eichenfield, J. Chan, R.M. Camacho, K.J. Vahala, O. Painter, Optomechanical crystals. Nat. 462, 78 (2009)

    Google Scholar 

  19. D.J. Wilson, C.A. Regal, S.B. Papp, H.J. Kimble, Cavity optomechanics with stoichiometric SiN films. Phys. Rev. Lett. 103, 207204 (2009)

    Google Scholar 

  20. M. Li, W.H.P. Pernice, H.X. Tang, Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides. Phys. Rev. Lett. 103, 223901 (2009)

    Google Scholar 

  21. A.H. Safavi-Naeini, T.P.M. Alegre, M. Winger, O. Painter, Optomechanics in an ultrahigh-Q slotted 2D photonic crystal cavity. Appl. Phys. Lett. 97, 181106 (2010)

    Google Scholar 

  22. L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, I. Favero, High frequency GaAs nano-optomechanical disk resonator. Phys. Rev. Lett. 105, 263903 (2010)

    Google Scholar 

  23. J. Chan, T.P.M. Alegre, A.H. Safavi-Naeini, J.T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011)

    Google Scholar 

  24. A. Naik, O. Buu, M.D. LaHaye, A.D. Armour, A.A. Clerk, M.P. Blencowe, K.C. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193 (2006)

    Google Scholar 

  25. A.N. Cleland, J.S. Aldridge, D.C. Driscoll, A.C. Gossard, Nanomechanical displacement sensing using a quantum point contact. Appl. Phys. Lett. 81, 1699 (2002)

    Google Scholar 

  26. D. Rugar, R. Budakian, H.J. Mamin, B.W. Chui, Single spin detection by magnetic resonance force microscopy. Nature 430, 329 (2004)

    Google Scholar 

  27. P. Rabl, P. Cappellaro, M.V.G. Dutt, L. Jiang, J.R. Maze, M.D. Lukin, Strong magnetic coupling between an electronic spin qubit and a mechanical resonator, Phys. Rev. B 79, 041302(R) (2009)

    Google Scholar 

  28. T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. Vahala, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005)

    Google Scholar 

  29. C.A. Regal, J.D. Teufel, K.W. Lehnert, Measuring nanomechanical motion with a microwave cavity interferometer. Nat. Phys. 4, 555 (2008)

    Google Scholar 

  30. M. Eichenfield, C.P. Michael, R. Perahia, O. Painter, Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photon. 1, 416 (2007)

    Google Scholar 

  31. M. Li, W.H.P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H.X. Tang, Harnessing optical forces in integrated photonic circuits. Nat. 456, 480 (2008)

    Google Scholar 

  32. H. Walther, B.T.H. Varcoe, B.-G. Englert, T. Becker, Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006)

    Google Scholar 

  33. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, A. Scherer, Vacuum rabi splitting in semiconductors. Nat. Phys. 2, 81 (2006)

    Google Scholar 

  34. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Google Scholar 

  35. K. Hammerer, M. Aspelmeyer, E. Polzik, P. Zoller, Establishing Einstein-Podolsky-Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009)

    Google Scholar 

  36. I. Wilson-Rae, N. Nooshi, J. Dobrindt, T.J. Kippenberg, W. Zwerger, Cavity-assisted backaction cooling of mechanical resonators. New J. Phys. 10, 095007 (2008)

    Google Scholar 

  37. J. Zhang, K. Peng, S.L. Braunstein, Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)

    Google Scholar 

  38. R.J. Thompson, G. Rempe, H.J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132 (1992)

    Google Scholar 

  39. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel, Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Nature 450, 272 (2007)

    Google Scholar 

  40. T. Aoki, B. Dayan, E. Wilcut, W.P. Bowen, A.S. Parkins, T.J. Kippenberg, K.J. Vahala, H.J. Kimble, Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671 (2006)

    Google Scholar 

  41. J.P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197 (2004)

    Google Scholar 

  42. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314 (1992)

    Google Scholar 

  43. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200 (2004)

    Google Scholar 

  44. Y. Zhu, D.J. Gauthier, S.E. Morin, Q. Wu, H.J. Carmichael, T.W. Mossberg, Vacuum rabi splitting as a feature of linear-dispersion theory: analysis and experimental observations. Phys. Rev. Lett. 64, 2499 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Gröblacher .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gröblacher, S. (2012). Opto-Mechanics in the Strong Coupling Regime. In: Quantum Opto-Mechanics with Micromirrors. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34955-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34955-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34954-6

  • Online ISBN: 978-3-642-34955-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics