Skip to main content

Port-Hamiltonian Differential-Algebraic Systems

  • Chapter
Surveys in Differential-Algebraic Equations I

Part of the book series: Differential-Algebraic Equations Forum ((DAEF))

Abstract

The basic starting point of port-Hamiltonian systems theory is network modeling; considering the overall physical system as the interconnection of simple subsystems, mutually influencing each other via energy flow. As a result of the interconnections algebraic constraints between the state variables commonly arise. This leads to the description of the system by differential-algebraic equations (DAEs), i.e., a combination of ordinary differential equations with algebraic constraints. The basic point of view put forward in this survey paper is that the differential-algebraic equations that arise are not just arbitrary, but are endowed with a special mathematical structure; in particular with an underlying geometric structure known as a Dirac structure. It will be discussed how this knowledge can be exploited for analysis and control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the port-Hamiltonian formulation there is a clear preference for taking the charges to be the state variables instead of the voltages V i . Although this comes at the expense of the introduction of extra variables, it will turn out to be very advantageous from a geometric point of view.

  2. 2.

    Note that this separation is already present in the geometric description of Hamiltonian dynamics in classical mechanics; see e.g. [1]. There the dynamics is defined with the use of the Hamiltonian and the symplectic structure on the phase space of the system. Dirac structures form a generalization of symplectic structures, and allow the inclusion of algebraic constraints. Note furthermore that the symplectic structure in classical mechanics is commonly determined by the geometry of the configuration space, while the Dirac structure of a port-Hamiltonian system captures its network topology.

  3. 3.

    Throughout we adopt the convention that \(\frac{\partial H}{\partial x}(x)\) denotes the column vector of partial derivatives of H.

  4. 4.

    In many cases, F will be derivable from a so-called Rayleigh dissipation function \(\mathfrak{R}:\mathbb {R}^{m_{r}}\rightarrow \mathbb {R}\), in the sense that \(F(e_{R})=\frac{\partial\mathfrak{R}}{\partial e_{R}}(e_{R})\).

  5. 5.

    The Whitney sum of two vector bundles with the same base space is defined as the vector bundle whose fiber above each element of this common base space is the product of the fibers of each individual vector bundle.

  6. 6.

    On the Dutch version of the euro.

  7. 7.

    This is very much like the multi-port description of a passive linear circuit, where it is known that although it is not always possible to describe the port as an admittance or as an impedance, it is possible to describe it as a hybrid admittance/impedance transfer matrix, for a suitable selection of input voltages and currents and complementary output currents and voltages [3].

  8. 8.

    The equality \(0=b^{T}(x)\frac{\partial H}{\partial x}(x)\) also has the interpretation (well-known in a mechanical system context) that the constraint input b(x)λ is ‘workless’; i.e., the evolution of the value of the Hamiltonian H is not affected by this term.

  9. 9.

    For more details regarding the precise form of the integrability conditions see Sect. 7.

  10. 10.

    However it can be shown [26] that if (4.33) holds for some non-degenerate resistive relation then it has to hold for all.

  11. 11.

    I thank Stephan Trenn for an enlightening discussion on this issue.

  12. 12.

    See [2] for a direct approach to the composition of multiple Dirac structures.

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Benjamin/Cummings, Reading (1978)

    MATH  Google Scholar 

  2. Battle, C., Massana, I., Simo, E.: Representation of a general composition of Dirac structures. In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12–15, pp. 5199–5204 (2011)

    Chapter  Google Scholar 

  3. Belevitch, V.: Classical Network Theory. Holden-Day, San Francisco (1968)

    MATH  Google Scholar 

  4. Bloch, A.M., Crouch, P.E.: Representations of Dirac structures on vector spaces and nonlinear LC circuits. In: Proceedings Symposia in Pure Mathematics, Differential Geometry and Control Theory, pp. 103–117. American Mathematical Society, Providence (1999)

    Google Scholar 

  5. Brogliato, B.: Nonsmooth Mechanics. Communications and Control Engineering, 2nd edn. Springer, London (1999)

    Book  MATH  Google Scholar 

  6. Camlibel, M.K., Heemels, W.P.M.H., van der Schaft, A.J., Schumacher, J.M.: Switched networks and complementarity. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50, 1036–1046 (2003)

    Article  Google Scholar 

  7. Cervera, J., van der Schaft, A.J., Banos, A.: Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007)

    Article  MATH  Google Scholar 

  8. Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dalsmo, M., van der Schaft, A.J.: On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J. Control Optim. 37(1), 54–91 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Desoer, C.A., Sastry, S.S.: Jump behavior of circuits and systems. IEEE Trans. Circuits Syst. 28, 1109–1124 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dorfman, I.: Dirac Structures and Integrability of Nonlinear Evolution Equations. Wiley, Chichester (1993)

    Google Scholar 

  13. Escobar, G., van der Schaft, A.J., Ortega, R.: A Hamiltonian viewpoint in the modelling of switching power converters. Automatica 35, 445–452 (1999). Special Issue on Hybrid Systems

    Article  MATH  Google Scholar 

  14. Gerritsen, K., van der Schaft, A.J., Heemels, W.P.M.H.: On switched Hamiltonian systems. In: Gilliam, D.S., Rosenthal, J. (eds.) Proceedings 15th International Symposium on Mathematical Theory of Networks and Systems (MTNS2002), South Bend, August 12–16 (2002)

    Google Scholar 

  15. Golo, G., van der Schaft, A.J., Breedveld, P.C., Maschke, B.M.: Hamiltonian formulation of bond graphs. In: Nonlinear and Hybrid Systems in Automotive Control, pp. 351–372 (2003)

    Google Scholar 

  16. Koopman, J., Jeltsema, D., Verhaegen, M.: Port-Hamiltonian formulation and analysis of the LuGre friction model. In: 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 3181–3186. IEEE, Control Systems Society, New York (2008)

    Google Scholar 

  17. Kurula, M., Zwart, H., van der Schaft, A.J., Behrndt, J.: Dirac structures and their composition on Hilbert spaces. J. Math. Anal. Appl. 372, 402–422 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liberzon, D., Trenn, S.: Switched nonlinear differential algebraic equations: solution theory, Lyapunov functions, and stability. Automatica 48(5), 954–963 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Maschke, B.M., van der Schaft, A.J.: Port-controlled Hamiltonian systems: modelling origins and system theoretic properties. In: 2nd IFAC Symposium on Nonlinear Control Systems Design (NOLCOS), Bordeaux, June, pp. 359–365 (1992)

    Google Scholar 

  20. Maschke, B.M., van der Schaft, A.J., Breedveld, P.C.: An intrinsic Hamiltonian formulation of network dynamics: non-standard Poisson structures and gyrators. J. Franklin Inst. 329(5), 923–966 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Narayanan, H.: Some applications of an implicit duality theorem to connections of structures of special types including Dirac and reciprocal structures. Syst. Control Lett. 45, 87–96 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. American Mathematical Society, Providence (1972)

    MATH  Google Scholar 

  23. Nijmeijer, H., van der Schaft, A.J.: Nonlinear Dynamical Control Systems. Springer, New York (1990)

    Book  MATH  Google Scholar 

  24. Ortega, R., van der Schaft, A.J., Mareels, Y., Maschke, B.M.: Putting energy back in control. Control Syst. Mag. 21, 18–33 (2001)

    Article  Google Scholar 

  25. Ortega, R., van der Schaft, A.J., Maschke, B.M., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38(4), 585–596 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pasumarthy, R., van der Schaft, A.J.: Achievable Casimirs and its implications on control of port-Hamiltonian systems. Int. J. Control 80, 1421–1438 (2007)

    Article  MATH  Google Scholar 

  27. Paynter, H.M.: Analysis and Design of Engineering Systems. MIT Press, Cambridge (1961)

    Google Scholar 

  28. van der Schaft, A.J.: Equations of motion for Hamiltonian systems with constraints. J. Phys. A, Math. Gen. 20, 3271–3277 (1987)

    Article  MATH  Google Scholar 

  29. van der Schaft, A.J.: Implicit Hamiltonian systems with symmetry. Rep. Math. Phys. 41, 203–221 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. van der Schaft, A.J.: Interconnection and geometry. In: Polderman, J.W., Trentelman, H.L. (eds.) The Mathematics of Systems and Control: From Intelligent Control to Behavioral Systems, Groningen, The Netherlands, pp. 203–218 (1999)

    Google Scholar 

  31. van der Schaft, A.J.: L 2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  32. van der Schaft, A.J.: Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In: Advanced Dynamics and Control of Structures and Machines. CISM Courses and Lectures, vol. 444. Springer, New York (2004)

    Google Scholar 

  33. van der Schaft, A.J.: Port-Hamiltonian systems: an introductory survey. In: Sanz-Sole, M., Soria, J., Verona, J.L., Verdura, J. (eds.) Proc. of the International Congress of Mathematicians, vol. III, Invited Lectures, Madrid, Spain, pp. 1339–1365 (2006)

    Google Scholar 

  34. van der Schaft, A.J.: Port-Hamiltonian systems. In: Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H. (eds.) Modeling and Control of Complex Physical Systems; the Port-Hamiltonian Approach, pp. 53–130. Springer, Berlin (2009). ISBN 978-3-642-03195-3. Chap. 2

    Google Scholar 

  35. van der Schaft, A.J., Camlibel, M.K.: A state transfer principle for switching port-Hamiltonian systems. In: Proc. 48th IEEE Conf. on Decision and Control, Shanghai, China, December 16–18, pp. 45–50 (2009)

    Google Scholar 

  36. van der Schaft, A.J., Cervera, J.: Composition of Dirac structures and control of port-Hamiltonian systems. In: Gilliam, D.S., Rosenthal, J. (eds.) Proceedings 15th International Symposium on Mathematical Theory of Networks and Systems, August (2002)

    Google Scholar 

  37. van der Schaft, A.J., Maschke, B.M.: On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. Math. Phys. 34, 225–233 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. van der Schaft, A.J., Maschke, B.M.: The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektron. Übertragungstech. 45, 362–371 (1995)

    Google Scholar 

  39. van der Schaft, A.J., Maschke, B.M.: Hamiltonian formulation of distributed-parameter systems with boundary energy flow. J. Geom. Phys. 42, 166–194 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. van der Schaft, A.J., Maschke, B.: Port-Hamiltonian systems on graphs. SIAM J. Control Optim. (2013, to appear)

    Google Scholar 

  41. van der Schaft, A.J., Schumacher, J.M.: The complementary-slackness class of hybrid systems. Math. Control Signals Syst. 9, 266–301 (1996)

    Article  MATH  Google Scholar 

  42. van der Schaft, A.J., Schumacher, J.M.: Complementarity modelling of hybrid systems. IEEE Trans. Autom. Control AC-43, 483–490 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This survey article is based on joint work with many colleagues, whom I thank for a very stimulating collaboration. In particular I thank Bernhard Maschke for continuing joint efforts over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. van der Schaft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Schaft, A.J. (2013). Port-Hamiltonian Differential-Algebraic Systems. In: Ilchmann, A., Reis, T. (eds) Surveys in Differential-Algebraic Equations I. Differential-Algebraic Equations Forum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34928-7_5

Download citation

Publish with us

Policies and ethics