Skip to main content

Basic SSA

  • Chapter
  • First Online:
Singular Spectrum Analysis for Time Series

Part of the book series: SpringerBriefs in Statistics ((BRIEFSSTATIST))

Abstract

Consider a real-valued time series \(\mathbb{X }=\mathbb{X }_N=(x_1,\ldots ,x_{N})\) of length \(N\). Assume that \(N>2\) and \(\mathbb{X }\) is a nonzero series; that is, there exists at least one \(i\) such that \(x_i\ne 0\). Let \(L\) (\(1<L<N\)) be some integer called the window length and \(K=N-L+1\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandrov T (2009) A method of trend extraction using singular spectrum analysis. RevStat 7(1):1–22

    MathSciNet  Google Scholar 

  2. Allen M, Smith L (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. J Clim 9(12):3373–3404

    Article  Google Scholar 

  3. Alonso F, Salgado D (2008) Analysis of the structure of vibration signals for tool wear detection. Mech Syst Signal Process 22(3):735–748

    Article  Google Scholar 

  4. Alonso F, Castillo J, Pintado P (2005) Application of singular spectrum analysis to the smoothing of raw kinematic signals. J Biomech 38(5):1085–1092

    Article  Google Scholar 

  5. Andrews D, Herzberg A (1985) Data. A collection of problems from many fields for the student and research worker. Springer, New York

    MATH  Google Scholar 

  6. Badeau R, David B, Richard G (2004) Selecting the modeling order for the ESPRIT high resolution method: an alternative approach. In: Proceedings of IEEE ICASSP, vol 2, pp 1025–1028

    Google Scholar 

  7. Bilancia M, Campobasso F (2010) Airborne particulate matter and adverse health events: robust estimation of timescale effects. In: Bock HH et al. (eds) Classification as a tool for research, studies in classification, data analysis, and knowledge organization. Springer, Heidelberg, pp 481–489

    Google Scholar 

  8. Brillinger D (1975) Time series. Data analysis and theory. Holt, Rinehart and Winston, Inc., New York

    MATH  Google Scholar 

  9. Clemens J (1994) Whole earth telescope observation of the white dwarf star PG1159-035. In: Weigend A, Gershenfeld N (eds) Time series prediction: forecasting the future and understanding the past. Addison-Wesley, Reading

    Google Scholar 

  10. Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231

    Article  Google Scholar 

  11. Ghil M, Allen RM, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson A, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):1–41

    Article  Google Scholar 

  12. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  13. Golyandina N (2010) On the choice of parameters in singular spectrum analysis and related subspace-based methods. Stat Interface 3(3):259–279

    MathSciNet  MATH  Google Scholar 

  14. Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC, New York

    Book  MATH  Google Scholar 

  15. Golyandina N, Pepelyshev A, Steland A (2012) New approaches to nonparametric density estimation and selection of smoothing parameters. Comput Stat Data Anal 56(7):2206–2218

    Article  MathSciNet  MATH  Google Scholar 

  16. Harris T, Yan H (2010) Filtering and frequency interpretations of singular spectrum analysis. Physica D 239:1958–1967

    Article  MathSciNet  MATH  Google Scholar 

  17. Hipel K, McLeod A (1994) Time series modelling of water resources and environmental systems. Elsevier Science, Amsterdam

    Google Scholar 

  18. Huber PJ (1985) Projection pursuit. Ann Stat 13(2):435–475

    Article  MATH  Google Scholar 

  19. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Networks 13(4–5):411–430

    Article  Google Scholar 

  20. Janowitz M, Schweizer B (1989) Ordinal and percentile clustering. Math Soc Sci 18:135–186

    Article  MathSciNet  MATH  Google Scholar 

  21. Kendall M, Stuart A (1976) Design and analysis, and time series, the advanced theory of statistics, vol 3, 3rd edn. Charles Griffin, London

    Google Scholar 

  22. Korobeynikov A (2010) Computation- and space-efficient implementation of SSA. Stat Interface 3:357–368

    MathSciNet  MATH  Google Scholar 

  23. Langville AN, Meyer CD (2005) A survey of eigenvector methods for web information retrieval. SIAM Rev 47:135–161

    Article  MathSciNet  MATH  Google Scholar 

  24. Lemmerling P, Van Huffel S (2001) Analysis of the structured total least squares problem for Hankel/Toeplitz matrices. Numerical Algorithms 27:89–114

    Article  MathSciNet  MATH  Google Scholar 

  25. Marchini JL, Heaton C, Ripley BD (2010) fastICA: FastICA algorithms to perform ICA and projection pursuit. http://CRAN.R-project.org/package=fastICA, R package version 1.1-13

  26. Markovsky I (2011) Low rank approximation: algorithms, implementation, applications. Springer, Heidelberg

    Google Scholar 

  27. Markovsky I, Van Huffel S (2007) Overview of total least-squares methods. Signal Process 87:2283–2302

    Article  MATH  Google Scholar 

  28. Moskvina V, Schmidt KM (2002) Approximate projectors in singular spectrum analysis. SIAM J Matrix Anal Appl 24:932–942

    Article  MathSciNet  Google Scholar 

  29. Nekrutkin V (2010) Perturbation expansions of signal subspaces for long signals. Stat Interface 3:297–319

    MathSciNet  MATH  Google Scholar 

  30. Pietilä A, El-Segaier M, Vigário R, Pesonen E (2006) Blind source separation of cardiac murmurs from heart recordings. In: Rosca J et al (eds) Independent component analysis and blind signal separation, Lecture Notes in Computer Science, vol 3889. Springer, Heidelberg, pp 470–477

    Google Scholar 

  31. Rao TS, Gabr M (1984) An introduction to bispectral analysis and bilinear time series models. Springer, Heidelberg

    Book  MATH  Google Scholar 

  32. Sauer Y, Yorke J, Casdagli M (1991) Embedology. J Stat Phys 65:579–616

    Article  MathSciNet  MATH  Google Scholar 

  33. Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence, Lecture Notes in Mathematics, vol 898. Springer, Berlin, pp 366–381

    Google Scholar 

  34. Van Huffel S (1993) Enhanced resolution based on minimum variance estimation and exponential data modeling. Signal Process 33:333–355

    Article  Google Scholar 

  35. Vautard R, Yiou P, Ghil M (1992) Singular-Spectrum Analysis: a toolkit for short, noisy chaotic signals. Physica D 58:95–126

    Article  Google Scholar 

  36. Wax M, Kailath T (1985) Detection of signals by information theoretic criteria. IEEE Trans Acoust 33:387–392

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Golyandina .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Golyandina, N., Zhigljavsky, A. (2013). Basic SSA. In: Singular Spectrum Analysis for Time Series. SpringerBriefs in Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34913-3_2

Download citation

Publish with us

Policies and ethics