Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Singular Spectrum Analysis for Time Series

Part of the book series: SpringerBriefs in Statistics ((BRIEFSSTATIST))

Abstract

Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting. It combines elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the literature on SSA, Basic SSA is sometimes called BK SSA and what we call ‘Toeplitz SSA’ is called VG SSA; here BK and VG stand for Broomhead & King [4, 5] and Vautard & Ghil [32], respectively.

References

  1. Alexandrov T, Golyandina N, Spirov A (2008) Singular spectrum analysis of gene expression profiles of early drosophila embryo: Exponential-in-distance patterns. Res Lett in Signal Process 2008:1–5

    Google Scholar 

  2. Allen M, Smith L (1996) Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise. J Clim 9(12):3373–3404

    Article  Google Scholar 

  3. Azulay DO, Brain P, Sultana SR (2011) Characterisation of very low frequency oscillations in laser Doppler perfusion signals with a singular spectrum analysis. Microvasc Res 81(3):239–244

    Article  Google Scholar 

  4. Broomhead D, King G (1986) Extracting qualitative dynamics from experimental data. Physica D 20:217–236

    Article  MathSciNet  MATH  Google Scholar 

  5. Broomhead D, King G (1986b) On the qualitative analysis of experimental dynamical systems. In: Sarkar S (ed) Nonlinear Phenomena and Chaos. Adam Hilger, Bristol, pp 113–144

    Google Scholar 

  6. de Carvalho M, Rodrigues PC, Rua A (2012) Tracking the US business cycle with a singular spectrum analysis. Econ Lett 114(1):32–35

    Article  Google Scholar 

  7. Colebrook JM (1978) Continuous plankton records - zooplankton and evironment, northeast Atlantic and North Sea, 1948–1975. Oceanol Acta 1:9–23

    Google Scholar 

  8. Danilov D, Zhigljavsky A (eds) (1997) Principal components of time series: the “Caterpillar” method. St.Petersburg Press, St. Petersburg (in Russian)

    Google Scholar 

  9. Elsner JB, Tsonis AA (1996) Singular spectrum analysis: a new tool in time series analysis. Plenum, New York

    Google Scholar 

  10. Fraedrich K (1986) Estimating dimensions of weather and climate attractors. J Atmos Sci 43:419–432

    Article  MathSciNet  Google Scholar 

  11. Gillard J (2010) Cadzow’s basic algorithm, alternating projections and singular spectrum analysis. Stat Interface 3(3):335–343

    MathSciNet  MATH  Google Scholar 

  12. Golyandina N (2010) On the choice of parameters in singular spectrum analysis and related subspace-based methods. Stat Interface 3(3):259–279

    MathSciNet  MATH  Google Scholar 

  13. Golyandina N, Usevich K (2010) 2D-extension of singular spectrum analysis: algorithm and elements of theory. In: Olshevsky V, Tyrtyshnikov E (eds) Matrix methods: theory, algorithms and applications. World Scientific Publishing, Algorithms and Applications, pp 449–473

    Chapter  Google Scholar 

  14. Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman &Hall/CRC, Boca Raton

    Google Scholar 

  15. Golyandina N, Pepelyshev A, Steland A (2012) New approaches to nonparametric density estimation and selection of smoothing parameters. Comput Stat Data Anal 56(7):2206–2218

    Article  MathSciNet  MATH  Google Scholar 

  16. Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3):424–438

    Article  MathSciNet  Google Scholar 

  17. Hassani H, Heravi S, Zhigljavsky A (2009) Forecasting European industrial production with singular spectrum analysis. Int J Forecast 25(1):103–118

    Article  Google Scholar 

  18. Hassani H, Zhigljavsky A, Patterson K, Soofi AS (2011) A comprehensive causality test based on the singular spectrum analysis. In: Russo F, Williamson J (eds) Illari PM. Oxford University press, Causality in the Sciences, pp 379–404

    Google Scholar 

  19. Hassani H, Heravi S, Zhigljavsky A (2012) Forecasting UK industrial production with multivariate singular spectrum analysis. J Forecast. doi:10.1002/for.2244

    Google Scholar 

  20. Huang N et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. R Soc Lond Proc Ser A 454:903–995

    Article  MATH  Google Scholar 

  21. Kapl M, Mueller W (2010) Prediction of steel prices: a comparison between a convential regression model and MSSA. Stat Interface 3(3):369–375

    MathSciNet  MATH  Google Scholar 

  22. Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process, Geophys 13(2):151–159

    Article  Google Scholar 

  23. Mahecha MD, Fürst LM, Gobron N, Lange H (2010) Identifying multiple spatiotemporal patterns: A refined view on terrestrial photosynthetic activity. Pattern Recogn Lett 31(14):2309–2317

    Article  Google Scholar 

  24. Mohammad Y, Nishida T (2011) On comparing SSA-based change point discovery algorithms. IEEE SII pp 938–945

    Google Scholar 

  25. Moskvina V, Zhigljavsky A (2003) An algorithm based on singular spectrum analysis for change-point detection. Commun Stat Simul Comput 32:319–352

    Article  MathSciNet  MATH  Google Scholar 

  26. Nekrutkin V (2010) Perturbation expansions of signal subspaces for long signals. Stat Interface 3:297–319

    MathSciNet  MATH  Google Scholar 

  27. Patterson K, Hassani H, Heravi S, Zhigljavsky A (2011) Multivariate singular spectrum analysis for forecasting revisions to real-time data. J of Appl Stat 38(10):2183–2211

    Article  MathSciNet  Google Scholar 

  28. de Prony G (1795) Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et la vapeur de l’alkool à différentes températures. J de l’Ecole Polytechnique 1(2):24–76

    Google Scholar 

  29. Rodríguez-Aragón L, Zhigljavsky A (2010) Singular spectrum analysis for image processing. Stat Interface 3(3):419–426

    MathSciNet  MATH  Google Scholar 

  30. Tang Tsz Yan V, Wee-Chung L, Hong Y (2010) Periodicity analysis of DNA microarray gene expression time series profiles in mouse segmentation clock data. Stat Interface 3(3):413–418

    MathSciNet  MATH  Google Scholar 

  31. Usevich K (2010) On signal and extraneous roots in singular spectrum analysis. Stat Interface 3(3):281–295

    MathSciNet  MATH  Google Scholar 

  32. Vautard M, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35:395–424

    Article  MathSciNet  MATH  Google Scholar 

  33. Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58:95–126

    Article  Google Scholar 

  34. Weare BC, Nasstrom JS (1982) Examples of extended empirical orthogonal function analyses. Mon Weather Rev 110(6):481485

    Article  Google Scholar 

  35. Zhigljavsky A (Guest Editor) (2010) Special issue on theory and practice in singular spectrum analysis of time series. Stat Interface 3(3)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Golyandina .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Golyandina, N., Zhigljavsky, A. (2013). Introduction. In: Singular Spectrum Analysis for Time Series. SpringerBriefs in Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34913-3_1

Download citation

Publish with us

Policies and ethics