Skip to main content

Dynamics of a Coupled Pendulum Model of a Heliogyro Membrane Blade

  • Chapter
  • First Online:
Advances in Solar Sailing

Part of the book series: Springer Praxis Books ((ASTROENG))

Abstract

As a necessary precursor to a heliogyro solar sail flight demonstration, meaningful ground test experiments are necessary for predicting the linear and nonlinear structural dynamics of the heliogyro membrane blades in flight. This paper describes analytical comparisons of linear and nonlinear behavior of a multi-link discrete model of a heliogyro blade under 1-g gravitational and centrifugal loads, and one setup for experimental validation of 1-g out-of-plane motion. Linear system-identification is performed on the multi-link experimental data to validate the 1-g multi-link model of a heliogyro membrane blade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A :

= discrete-time state matrix

B :

= discrete-time input matrix

C :

= output matrix

D :

= direct transmission matrix

\( \hat{e}_{x} (t) \) :

= unit vector pointing to the direction of the gravitation field

\( \hat{e}_{y} (t) \) :

= unit vector perpendicular to \( \hat{e}_{x} (t) \) and \( \hat{e}_{x} (t) \) obeying the usual ordering of the axes

\( \hat{e}_{z} (t) \) :

= unit vector perpendicular to the plane of the chain in still motion

l:

= total length of the membrane blade, meter

m :

= total mass of the membrane blade, gram

m i j :

= discretized mass of the membrane blade; i = 1,2,…n; j = 1,2

n :

= degree of freedom (number of discretized sectors of the membrane blade)

s :

= half width of the membrane, meter

\( \theta_{i} \) :

= ith angular displacement of in-plane motion, radian; i = 1,2,…n

\( \phi_{i} \) :

= ith angular displacement of out-of-plane/bending motion, radian; i = 1,2,…n

\( \varphi_{i} \) :

= ith angular displacement of twisting motion, radian; i = 1,2,…n

\( \tau_{{\theta_{i} }} \) :

= torque for the ith angular displacement of in-plane motion; i = 1,2,…n

\( \tau_{{\phi_{i} }} \) :

= torque for the ith angular displacement of out-of-plane/bending motion; i = 1,2,…n

\( \tau_{{\phi_{i} }} \) :

= torque for the ith angular displacement of twisting motion; i = 1,2,…n

References

  1. MacNeal, R., “The Heliogyro: An Interplanetary Flying Machine,” NASA Contractor Report CR 84460, June 1967.

    Google Scholar 

  2. MacNeal, R. H., Structural Dynamics of the Heliogyro, NASA-CR-1745A, 1971.

    Google Scholar 

  3. McInnes, C. R., Solar Sailing: Technology, Dynamics and Mission Applications, Springer Praxis, New York, 1999.

    Google Scholar 

  4. Frisbee, R., “Solar Sails for Mars Cargo Missions”, Space Technology and Applications International ForumSTAIF 2002, January 14, 2002 – Volume 608, pp. 374-380.

    Google Scholar 

  5. Johnson, L., Young, R., Montgomery, E., and Alhom, D., “Status of Solar Sail Technology Within NASA,” Advances in Space Research, Vol. 48, No. 11, 2011, pp. 1687–1694.

    Google Scholar 

  6. Alhorn, D.C., Casas, J.P., Agasid, E.F., Adams, C.L., Laue, G., Kitts, C., O’Brien, S., “Nanosail-D: The Small Satellite That Could!,” 25th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, 8-11 Aug. 2011.

    Google Scholar 

  7. Wilkie, W.K., Warren, J.E., Thomson, M.W., Lisman, P.D., Walkemeyer, P.E., Guerrant, D.V., and Lawrence, D.A.,. “The Heliogyro Reloaded.” JANNAF 5th Spacecraft Propulsion Subcommittee Joint Meeting, December 2011.

    Google Scholar 

  8. Juang, J.-N., Hung, C.-H., and Wilkie, W. K., “Dynamics of a Spinning Membrane”, AAS 12-601, Jer-Nan Juang Astrodynamics Symposium, College Station, Texas, June 25-26, 2012.

    Google Scholar 

  9. Guerrant, D., Lawrence, D., and Wilkie, W.K.,. “Heliogyro Solar Sail Blade Twist Control,” 35th Annual AAS Guidance and Control Conference, 3–8 February 2012, Breckenridge, Colorado.

    Google Scholar 

  10. Guerrant, D., W. K. Wilkie, D. Lawrence. “Heliogyro Blade Twist Control via Reflectivity Modulation,” 13th AIAA Gossamer Systems Forum, 23-26 April, 2012, Honolulu, Hawaii. Won the award for Best Paper.

    Google Scholar 

  11. Guerrant, D., D. Lawrence, W. K. Wilkie. “Performance of a Heliogyro Blade Twist Controller with Finite Bandwidth,” AIAA/AAS Astrodynamics Specialist Conference, August 2012, Minneapolis, MN.

    Google Scholar 

  12. Guerrant, D. and D. Lawrence, “Heliogyro Solar Sail Blade Twist Stability Analysis of Root and Reflectivity Controllers,” AIAA Guidance, Navigation and Control Conference, August 2012, Minneapolis, MN. Finalist in the student paper competition.

    Google Scholar 

  13. Guerrant, D., Lawrence, D., Wilkie, W.K., “Dynamics and Control of the HELIOS Solar Sail Demonstrator,” 63 rd International Astronautical Congress, October, 2012, Naples, Italy.

    Google Scholar 

  14. Juang, J.-N., Applied System Identification, Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632, 1994, ISBN 0-13-079211-X.

    Google Scholar 

  15. Juang, J-N. and Phan, M.Q., Identification and Control of Mechanical Systems, Cambridge University Press, New York, NY 10011-4211, 2001, ISBN 0-521-78355-0.

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by (received funding from) the Headquarters of University Advancement at the National Cheng Kung University, which is sponsored by the Ministry of Education, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, YR., Juang, JN., Hung, CH., Keats Wilkie, W. (2014). Dynamics of a Coupled Pendulum Model of a Heliogyro Membrane Blade. In: Macdonald, M. (eds) Advances in Solar Sailing. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34907-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34907-2_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34906-5

  • Online ISBN: 978-3-642-34907-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics