Skip to main content

Solar Sail: Materials and Space Environmental Effects

  • Chapter
  • First Online:
Advances in Solar Sailing

Part of the book series: Springer Praxis Books ((ASTROENG))

Abstract

Theoretical aspects of a solar sail material degradation are presented when the solar electromagnetic and corpuscular forms of radiation were considered as sources of degradation. The analysis of the interaction of two components of solar radiation, the electromagnetic radiation and radiation of low- and high-energy electrons, protons, and helium ions emitted by the Sun with the solar-sail materials is discussed. The physical processes of the interactions of photons, electrons, protons and α-particles with sail material atoms and nuclei, leading to the degradation and ionization of solar sail materials are analyzed. The dependence of reflectivity and absorption for solar sail materials on temperature and on wavelength of the electromagnetic spectrum of solar radiation is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edwards, D. L., Semmel, C., Hovater, M., Nehls, M., Gray, P., Hubbs, W., And Wertz, G., “Status Of Solar Sail Material Characterization At Nasa’s Marshall Space Flight Center,” Protection of Materials and Structures from Space Environment, edited by J.I. Kleiman, Springer, 2006, pp. 233–246.

    Google Scholar 

  2. Dachwald, B., and Macdonald, M., Parametric Model and Optimal Control of Solar Sails with Optical Degradation, Journal of Guidance, Control, and Dynamics Vol. 29, No. 5, 2006, pp. 1170–1178. doi:10.2514/1.20313.

    Google Scholar 

  3. Nuclear and Space Radiation Effects on Materials, NASA Space Vehicle Design Criteria, NASA SP-8053, 1970.

    Google Scholar 

  4. Edwards,D., Hubbs,W., Gray, P.Wertz, G., Hoppe,D., Nehls, M., Semmel, C., Albarado, T., and Hollerman,W., In Proceedings of the 9th International Symposium on Material in a Space Environment, Noordwijk, The Netherlands, ESA Publications, Noordwijk, The Netherlands June 2003, pp. 16–20.

    Google Scholar 

  5. Albarado, T., Hollerman, W., Edwards, D., Hubbs, W., and Semmel, C. (2003) In Proceedings of ISEC 2003: 2003 International Solar Energy Conference, Hawaii, 15–18 March 2003.

    Google Scholar 

  6. Edwards, D., Hubbs, W., Stanaland, T., Hollerman, A., and Altstatt, R. (2002) In Proceedings of SPIE Photonics for Space Environments VIII, Vol. 4823, 2002.

    Google Scholar 

  7. Dalla Vedova, F., Henrion, H., Leipold, M., et. al. “The Solar Sail Materials (SSM) project – Status of activities”, Advances in Space Research Vol. 48, 2011, pp. 1922–1926.

    Google Scholar 

  8. 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490-00. [online database], URL: http://rredc.nrel.gov/solar/spectra/am0/. (Date Accessed 19 September 2008).

    Google Scholar 

  9. Michalsky, J.J., “The Astronomical Almanac’s algorithm for approximate solar position (1950–2050)”, Solar Energy Vol. 40, 1998, pp. 227–235.

    Google Scholar 

  10. Kezerashvili, R. Ya., and Matloff, G.L., “Solar radiation and the beryllium hollow-body sail: 1. The ionization and disintegration effects”, JBIS, Vol. 60, 2007, pp.169-179.

    Google Scholar 

  11. Arshak, K., and Korostynska, O., Mater. Sci. Eng. Vol. B133, 2006, pp. 1-.

    Google Scholar 

  12. H.C. Obanian, “Classical Electrodynamics”, 2nd ed., Infinity Science Press LLC, 2007.

    Google Scholar 

  13. D.J. Griffiths, “Introduction to Electrodynamics”, 3rd ed., Prentice Hall, 1999.

    Google Scholar 

  14. Kezerashvili, R.Ya., “Solar sail interstellar travel: 1. Thickness of solar sail films”, JBIS Vol. 61, 2008, pp. 430–439.

    Google Scholar 

  15. Kezerashvili, R. Ya., “Thickness requirement for solar sail foils”, Acta Astronautica Vol. 65, 2009, pp. 507–518.

    Google Scholar 

  16. Ashcroft, N.W., and Mermin, N. D., Solid State Physics, Brooks/Cole Thomson Learning, 1976.

    Google Scholar 

  17. Parker, W.J., and Abbott, G.L., Theoretical and Experimental Studies of the Total Emittance of Metals, in Symposium on Thermal Radiation of Solids, ed. S. Katzoff, NASA SP-55, 1965, pp. 11-28.

    Google Scholar 

  18. Latyev, L.N., Petrov, V. A., Čechovskoj, V. J., Šestakov, E. N. Izlutchatelnyje svojstva tverdych materialov. Moskva: Energia, (In Russian) 1974, pp. 306-310; pp. 400-409.

    Google Scholar 

  19. Polyakhova, E.N., Kosmicheskii Polet s Solnechnim Parusom (in Russian) (Cosmic flight with solar sail), Nauka, Moscow, 1988.

    Google Scholar 

  20. McInnes, C.R., Solar Sailing. Technology, Dynamics and Mission Applications, Springer, Praxis Publishing.1998.

    Google Scholar 

  21. Benford, J., and Benford, J., Acceleration of sails by thermal desorption of coatings, Acta Astronautica Vol. 56, 2005, pp. 593 – 599. doi:10.1016/j.actaastro.2004.09.049

    Google Scholar 

  22. Lewis, E.J., “Some Thermal and Electrical Properties of Beryllium”, Phys. Rev. Vol. 34, 1929, pp.1575 – 1587.

    Google Scholar 

  23. Peng, G., Yang, D., and He, S., Effect of VUV Radiation on Properties and Chemical Structure of Polyethylene Terephthalate Film, Protection of Materials and Structures from Space Environment, edited by J.I. Kleiman, Springer, 2006, pp. 225–232.

    Google Scholar 

  24. Zhou, O., Tanaka, K., and Itoh, G., Deformation of aluminum thin foils under tensile stress at elevated temperature, J. Mater. Sci. Lett. Vol. 21, 2002, pp. 215-216.

    Google Scholar 

  25. Yu, D. Y. W., and Spaepen, F., The yield strength of thin copper films on Kapton, J. Appl. Phys. Vol. 95, 2004 pp. 2991- 2997.

    Google Scholar 

  26. Matloff, G.L., Kezerashvili, R.Ya. Interstellar solar sailing: a figure of merit for monolayer sails. JBIS Vol. 61, 2008, pp. 330–333.

    Google Scholar 

  27. Berger, M.J., Coursey, J.S., Zucker, M.A., Chang, J., ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions. NIST, Gaithersburg, MD, 2005.

    Google Scholar 

  28. Kezerashvili, R. Ya., and Matloff, G.L., “Microscopic approach to analyze solar-sail space-environment effects”, Advances in Space Research Vol. 44, 2009, pp. 859–869.

    Google Scholar 

  29. Prosvirikov, V. M., A. V. Grigorevskiy, A.V., Kiseleva, L. V., Zelenkevich, A. P., And Tsvelev, V. M., “Influence of Space Environment on Spectral Optical Properties of Thermal Control Coatings”, Protection of Materials and Structures from Space Environment, edited by J.I. Kleiman, Springer, 2006, pp. 61–69.

    Google Scholar 

  30. Khassanchine, R. H., A. N. Timofeev, A.N., Galygin, A.N., Kostiuk, V. I., And Tsvelev, V. M., “Influence of Electron Radiation on Outgassing of Spacecraft Materials”,”, Protection of Materials and Structures from Space Environment, edited by J.I. Kleiman, Springer, 2006, pp. 43–50.

    Google Scholar 

  31. Janhunen, P., Sandroos, “Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion”, Ann. Geophys. Vol. 25, 2007, pp. 755–767.

    Google Scholar 

  32. Kezerashvili, R. Ya., and Matloff, G.L., “Solar radiation and the beryllium hollow-body sail: 2. Diffusion, recombination and erosion processes”. JBIS Vol. 61, 2008, pp. 47–57.

    Google Scholar 

  33. Khassanchine, R. H., Grigorevskiy, A. V., and Galygin, A. N., “Influence of Electron Radiation on Outgassing of Spacecraft Materials”, Journal of Spacecraft and Rockets Vol. 41(3), 2004, pp. 384–388.

    Google Scholar 

  34. Rios-Reyes, L., and Scheeres, D. L., “Generalized Model for Solar Sails,” Journal of Spacecraft and Rockets, Vol. 42, No. 1, 2005, pp. 182–185.

    Google Scholar 

  35. Mengali, G., and Quarta, A. A., “Optimal Three-Dimensional Interplanetary Rendezvous Using Nonideal Solar Sail,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 1, 2005, pp. 173–177.

    Google Scholar 

  36. Murphy, D.M., Murphey, T.W., and Gierow, P.A., “Scalable Solar-Sail Subsystem Design Concept”, Journal of Spacecraft and Rockets, Vol. 40, No. 4 (2003), pp. 539-547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Ya Kezerashvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kezerashvili, R.Y. (2014). Solar Sail: Materials and Space Environmental Effects. In: Macdonald, M. (eds) Advances in Solar Sailing. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34907-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34907-2_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34906-5

  • Online ISBN: 978-3-642-34907-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics