Skip to main content

Design and Trade-offs of a Pole-Sitter Mission

  • Chapter
  • First Online:
Advances in Solar Sailing

Part of the book series: Springer Praxis Books ((ASTROENG))

Abstract

This paper provides a mission analysis and systems design of a pole-sitter mission, i.e. a spacecraft that is continuously above an Earth Pole, and can provide real-time, continuous and hemispherical coverage of the polar regions. Two different propulsion strategies are proposed: solar electric propulsion (SEP) and SEP hybridized with a solar sail. For both, minimum-propellant pole-sitter orbits and transfers are designed, assuming Soyuz and Ariane 5 launch options. A mass budget analysis allows for a trade-off between mission lifetime and payload mass capacity (up to 7 years for 100 kg), and candidate payloads for a range of applications are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wertz, J. R. and Larson, W. J. (eds.), Space Mission Analysis and Design, Third Edition, Space Technology Library, Microcosm press/Kluwer Academic Publishers, El Segundo, California, USA, 1999.

    Google Scholar 

  2. Ceriotti, M., Diedrich, B. L. and McInnes, C. R., “Novel Mission Concepts for Polar Coverage: An Overview of Recent Developments and Possible Future Applications,” Acta Astronautica, Vol. 80, 2012, pp. 89-104. doi: 10.1016/j.actaastro.2012.04.043

  3. Anderson, P. C. and Macdonald, M., “Extension of the Molniya Orbit Using Low-Thrust Propulsion,” 21 st AAS/AIAA Space Flight Mechanics Meeting, AAS 11-236, AIAA, New Orleans, USA, 2011.

    Google Scholar 

  4. Anderson, P. C. and Macdonald, M., “Extension of Earth Orbits Using Low-Thrust Propulsion,” 61 st International Astronautical Congress (IAC 2010), Prague, Czech Republic, 2010.

    Google Scholar 

  5. McInnes, C. R. and Mulligan, P., “Final Report: Telecommunications and Earth Observations Applications for Polar Stationary Solar Sails,” National Oceanographic and Atmospheric Administration (NOAA)/University of Glasgow, Department of Aerospace Engineering, 2003, www.osd.noaa.gov/rpsi/polesitter.telecommunications.pdf [retrieved 16 November 2010].

  6. Driver, J. M., “Analysis of an Arctic Polesitter,” Journal of Spacecraft and Rockets, Vol. 17, No. 3, 1980, pp. 263-269. doi: 10.2514/3.57736

  7. McInnes, C. R., Solar Sailing: Technology, Dynamics and Mission Applications, Springer-Praxis Books in Astronautical Engineering, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  8. Mori, O., Sawada, H., Funase, R., Endo, T., Morimoto, M., Yamamoto, T., Tsuda, Y., Kawakatsu, Y. and Kawaguchi, J. i., “Development of First Solar Power Sail Demonstrator - Ikaros,” 21st International Symposium on Space Flight Dynamics (ISSFD 2009), CNES, Toulouse, France, 2009.

    Google Scholar 

  9. Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G. and Adams, C., “Nanosail-D: A Solar Sail Demonstration Mission,” Acta Astronautica, Vol. 68, No. 5-6, 2011, pp. 571–575. doi: 10.1016/j.actaastro.2010.02.008

  10. Ceriotti, M. and McInnes, C. R., “Generation of Optimal Trajectories for Earth Hybrid Pole-Sitters,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, 2011, pp. 847-859. doi: 10.2514/1.50935

  11. Forward, R. L., “Statite: A Spacecraft That Does Not Orbit,” Journal of Spacecraft and Rockets, Vol. 28, No. 5, 1991, pp. 606-611. doi: 10.2514/3.26287

  12. Waters, T. J. and McInnes, C. R., “Periodic Orbits above the Ecliptic in the Solar-Sail Restricted Three-Body Problem,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 3, 2007, pp. 687-693. doi: 10.2514/1.26232

  13. Leipold, M. and Götz, M., “Hybrid Photonic/Electric Propulsion,” Kayser-Threde GmbH, Technical Report SOL4-TR-KTH-0001, ESA contract No. 15334/01/NL/PA, Munich, Germany, 2002, January 2002.

    Google Scholar 

  14. Baig, S. and McInnes, C. R., “Artificial Three-Body Equilibria for Hybrid Low-Thrust Propulsion,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1644-1655. +doi: 10.2514/1.36125

  15. Mengali, G. and Quarta, A. A., “Trajectory Design with Hybrid Low-Thrust Propulsion System,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 2, 2007, pp. 419-426. doi: 10.2514/1.22433

  16. Mengali, G. and Quarta, A. A., “Tradeoff Performance of Hybrid Low-Thrust Propulsion System,” Journal of Spacecraft and Rockets, Vol. 44, No. 6, 2007, pp. 1263-1270. doi: 10.2514/1.30298

  17. Simo, J. and McInnes, C. R., “Displaced Periodic Orbits with Low-Thrust Propulsion,” 19 th AAS/AIAA Space Flight Mechanics Meeting, AAS 09-153, American Astronautical Society, Savannah, Georgia, USA, 2009.

    Google Scholar 

  18. Heiligers, J., Ceriotti, M., McInnes, C. R. and Biggs, J. D., “Displaced Geostationary Orbit Design Using Hybrid Sail Propulsion,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1852-1866. doi: 10.2514/1.53807

  19. Lazzara, M. A., Coletti, A. and Diedrich, B. L., “The Possibilities of Polar Meteorology, Environmental Remote Sensing, Communications and Space Weather Applications from Artificial Lagrange Orbit,” Advances in Space Research, Vol. 48, No. 11, 2011, pp. 1880-1889. doi: 10.1016/j.asr.2011.04.026

  20. Ceriotti, M. and McInnes, C. R., “Systems Design of a Hybrid Sail Pole-Sitter,” Advances in Space Research, Vol. 48, No. 11, 2011, pp. 1754–1762. doi: 10.1016/j.asr.2011.02.010

  21. Heiligers, J., Ceriotti, M., McInnes, C. R. and Biggs, J. D., “Design of Optimal Earth Pole-Sitter Transfers Using Low-Thrust Propulsion,” Acta Astronautica, Vol. 79, 2012, pp. 253–268. doi: 10.1016/j.actaastro.2012.04.025

  22. Heiligers, J., Ceriotti, M., McInnes, C. R. and Biggs, J. D., “Design of Optimal Transfers between North and South Pole-Sitter Orbits,” 22nd AAS/AIAA Space Flight Mechanics Meeting, AIAA, Charleston, South Carolina, USA, 2012.

    Google Scholar 

  23. Becerra, V. M., “Solving Complex Optimal Control Problems at No Cost with Psopt,” IEEE Multi-conference on Systems and Control, IEEE, Yokohama, Japan, 2010, pp. 1391-1396.

    Google Scholar 

  24. Wächter, A. and Biegler, L. T., “On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming,” Mathematical Programming, Vol. 106, No. 1, 2006, pp. 25-57.

    Google Scholar 

  25. Brophy, J., “Advanced Ion Propulsion Systems for Affordable Deep-Space Missions,” Acta Astronautica, Vol. 52, No. 2-6, 2003, pp. 309-316. doi: 10.1016/S0094-5765(02)00170-4

  26. Leiter, H. J., Killinger, R., Bassner, H., Müller, J., Kukies, R. and Fröhlich, T., “Development and Performance of the Advanced Radio Frequency Ion Thruster Rit-Xt,” 28 th International Electric Propulsion Conference (IEPC 2003), Toulouse, France, 2003.

    Google Scholar 

  27. Funase, R., Mori, O., Tsuda, Y., Shirasawa, Y., Saiki, T., Mimasu, Y. and Kawaguchi, J., “Attitude Control of Ikaros Solar Sail Spacecraft and Its Flight Results,” 61 st International Astronautical Congress (IAC 2010), IAF, Prague, Czech Republic, 2010.

    Google Scholar 

  28. Dachwald, B., Mengali, G., Quarta, A. A. and Macdonald, M., “Parametric Model and Optimal Control of Solar Sails with Optical Degradation,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 5, 2006, pp. 1170-1178. doi: 10.2514/1.20313

  29. Kawaguchi, J. i., Mimasu, Y., Mori, O., Funase, R., Yamamoto, T. and Tsuda, Y., “Ikaros - Ready for Lift-Off as the World’s First Solar Sail Demonstration in Interplanetary Space,” 60 th International Astronautical Congress (IAC 2009), IAC-09-D1.1.3, International Astronautical Federation, Daejeon, Korea, 2009.

    Google Scholar 

  30. Murphy, D. M., Murphey, T. W. and Gierow, P. A., “Scalable Solar-Sail Subsystem Design Concept,” Journal of Spacecraft and Rockets, Vol. 40, No. 4, 2003, pp. 539-547. doi: 10.2514/2.3975

Download references

Acknowledgments

This work was funded by the European Research Council, as part of project 227571 VISIONSPACE. The authors thank Dr. Victor M. Becerra, of the School of Systems Engineering, University of Reading, Reading, UK for providing the software PSOPT freely, as well as advices on its use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Ceriotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ceriotti, M., Heiligers, J., McInnes, C.R. (2014). Design and Trade-offs of a Pole-Sitter Mission. In: Macdonald, M. (eds) Advances in Solar Sailing. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34907-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34907-2_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34906-5

  • Online ISBN: 978-3-642-34907-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics