Skip to main content

Navigation Using CMOS Polarization Sensor

  • Chapter
  • 2156 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 461))

Abstract

The navigational strategies of insects using skylight polarization are interesting for applications in autonomous agent navigation because they rely on very little information for navigation. The skylight polarization pattern for navigation varies in a systematic fashion both in plane (e-vector) and degree of polarization, depending only on the direction of the observation point relative to the angular position of the sun. This is found to be very efficient and reliable for real time navigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Oxford University Press (1978) ISBN: 0198572069

    Google Scholar 

  2. Thorndyke, P., Hayes-Roth, B.: Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology 14, 560–589 (1982)

    Article  Google Scholar 

  3. Hafner, V.: Adaptive Navigation Strategies in Biorobotics: Visual Homing and Cognitive Mapping in Animals and Machines. Shaker Verlag (2004) ISBN: 3832228578

    Google Scholar 

  4. Wehner, R., Michel, B., Antonsen, P.: Visual navigation in insects: coupling of egocentric and geocentric information. Journal of Experimental Biology 199, 129–140 (1996)

    Google Scholar 

  5. Moravec, H.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Technical Report CMU-RI-TR-3, Carnegie-Mellon University, Robotic Institute (1980)

    Google Scholar 

  6. DeSouza, G., Kak, A.: Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern and Machine Intelligence 24, 237–267 (2002)

    Article  Google Scholar 

  7. Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., Wehner, R.: A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems 30(2), 39–64 (2000)

    Article  Google Scholar 

  8. Lambrinos, D., Maris, M., Kobayashi, H., Labhart, T., Pfeifer, R., Wehner, R.: An autonomous agent navigating with a polarized light compass. Adaptive Behaviour 6(1-2), 131–161 (1997)

    Article  Google Scholar 

  9. Usher, K., Ridley, P., Corke, P.: A camera as a polarized light compass: preliminary experiments. In: Proceedings of Australian Conference on Robotics and Automation, pp. 116–120 (2001)

    Google Scholar 

  10. Müller, M., Wehner, R.: Path integration in desert ants, Cataglyphis Fortis. Proceedings of National Academy of Sciences 85, 5287–5290 (1988)

    Article  Google Scholar 

  11. Chen, Z., Birchfield, S.: Qualitative vision based mobile robot navigation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2686–2692 (2006)

    Google Scholar 

  12. Moini, A.: Vision chips. Kluwer academic publishers, Boston (2002) ISBN: 0792386647

    Google Scholar 

  13. Müller, M., Wehner, R.: The hidden spiral: systematic search and path integration in desert ants, Cataglyphis Fortis. Journal of Comparitive Physiology A-Sensory Neural and Behavioural Physiology 175, 525–530 (1994)

    Google Scholar 

  14. Wehner, R., Müller, M.: The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proceedings of the National Academy of Sciences, USA 103(33), 12575–12579 (2006)

    Article  Google Scholar 

  15. Santschi, F.: Review Suisse Zoology, vol. 19, pp. 303–338 (1911)

    Google Scholar 

  16. Liebe, C.: Solar compass chip. IEEE Sensors Journal 4, 779–786 (2004)

    Article  Google Scholar 

  17. Chang, Y., Kang, S., Lee, B.: High accuracy image centroding algorithm for CMOS based digital sun sensors. In: Proceedings of IEEE Sensors Conference, pp. 329–336 (2007)

    Google Scholar 

  18. Xie, N., Theuwissen, A., Wang, X.: A CMOS image sensor with row and column profiling means. In: Proceedings of IEEE Sensors Conference, pp. 1356–1359 (2008)

    Google Scholar 

  19. Bjorn, L.: Photobiology: the science of life and light, p. 18. Springer publications (2007) ISBN: 9780387726540

    Google Scholar 

  20. Coulson, K.: Polarization and Intensity of Light in the atmosphere, Deepak, Hampton, VA, p. 2 (1988) ISBN: 0937194123

    Google Scholar 

  21. Smith, G.: The polarization of skylight: An example from nature. American Journal of Physics 75(1), 25–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Richardson, R., Hulburt, E.: Sky-brightness measurements near bocaiuva, brazil. Journal of Geophysics Research 54, 215–227 (1949)

    Article  Google Scholar 

  23. Wehner, R.: Desert ant navigation: how miniature brains solve complex task. Journal of Comparitive Physiology A-Sensory Neural and Behavioural Physiology 189, 579–588 (2003)

    Article  Google Scholar 

  24. Seidl, T.: Ant navigation and path finding. In: Proceedings of the 2nd ACT Workshop on Innovative Concepts, vol. 31(4), pp. 102–110 (2008)

    Google Scholar 

  25. Pieron, H.: Du role du sens musculaire dans l’orientation de quelques espéces de fourmis. Bulletin of Institute of General Psychology 4, 168–186 (1904)

    Google Scholar 

  26. Cornetz, V.: Trajets de fourmis et retours au nid. Mémoire De l’Institute Géneral, Psychologie 2, 1–67 (1910)

    Google Scholar 

  27. Mittelstaedt, M.L., Mittelstaedt, H.: Homing by path integration in a mammal. Naturwissenschaften 67, 566–567 (1980)

    Article  Google Scholar 

  28. Wehner, R.: The ant’s celestial compass system: spectral and polarization channels. In: Orientation and Communication in Arthropods, pp. 145–185. Birkhäuser Verlag, Basel (1997)

    Chapter  Google Scholar 

  29. Labhart, T., Meyer, E.: Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microscopy Research and Technique 47, 368–379 (1999)

    Article  Google Scholar 

  30. Herrling, P.: Regional distribution of three ultrastructural retinula types in the retina of cataglyphis bicolor fabr (formicidae, hymenoptera). Cell Tissue Research 69, 247–266 (1976)

    Google Scholar 

  31. Labhart, T.: How polarization-sensitive interneurons of crickets see the polarization pattern of the sky: a field study with an opto-electronic model neuron. Journal of Experimental Biology 202, 757–770 (1999)

    Google Scholar 

  32. Bernard, G., Wehner, R.: Functional similarities between polarization vision and color vision. Vision Research 17, 1019–1028 (1977)

    Article  Google Scholar 

  33. Sarkar, M., Segundo, D.S., van Hoof, C., Theuwissen, A.: Integrated polarization analyzing CMOS image sensor for autonomous agent navigation using polarized light. In: Proceedings of IEEE International conference on Intelligent Systems, pp. 224–229 (2010)

    Google Scholar 

  34. Sarkar, M., Segundo, D.S., van Hoof, C., Theuwissen, A.: Integrated polarization analyzing CMOS image sensor for detecting incoming light ray direction. In: Proceedings of IEEE Sensors Application Symposium, pp. 194–199 (2010)

    Google Scholar 

  35. Sarkar, M., Segundo, D.S., van Hoof, C., Theuwissen, A.: Biologically inspired autonomous agent navigation using stokes parameters and an integrated polarization analyzing CMOS image sensor. In: Proceedings of Eurosensors XXIV Conference, vol. 5, pp. 673–676 (2010)

    Google Scholar 

  36. Gruev, V., van der Spiegel, J., Engheta, N.: Integrated polarization image sensor for cell detection. In: International Image Sensor Workshop (2009)

    Google Scholar 

  37. Gruev, V., Perkins, R.: A 1 mpixel ccd image sensor with aluminum nanowire polarization filter. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 629–632 (2010)

    Google Scholar 

  38. Sarkar, M., Segundo, D.S., van Hoof, C., Theuwissen, A.J.P.: Integrated polarization analyzing CMOS for navigation and incoming light ray direction. In: IEEE Transactions of Instrumentation and Measurement (accepted for publication)

    Google Scholar 

  39. Liu, W., Liu, S.: CMOS tunable 1/x circuit and its applications. Transactions on Fundamentals of Electronics, Communications and Computer Sciences E-86A, 1896–1899 (2003)

    Google Scholar 

  40. Liu, W., Liu, S., Wei, S.K.: CMOS current-mode divider and its application. IEEE Transactions on Circuits and Systems-II 52(3), 145–148 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukul Sarkar .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarkar, M., Theuwissen, A. (2013). Navigation Using CMOS Polarization Sensor. In: A Biologically Inspired CMOS Image Sensor. Studies in Computational Intelligence, vol 461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34901-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34901-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34900-3

  • Online ISBN: 978-3-642-34901-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics