Skip to main content

Evaluation by Differential Equations

  • Chapter
  • First Online:
Analytic Tools for Feynman Integrals

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 250))

  • 3374 Accesses

Abstract

In contrast to the method of alpha parametric representation, the method of MB representation and many other methods of evaluating individual Feynman integrals, the two methods presented in this and subsequent chapter are oriented at the evaluation of master integrals. This means that we have a solution of the IBP relations [21] for a given family of Feynman integrals, using some technique described in the previous chapter. The method of differential equation (DE) was suggested in [31–35] and developed in [46] and later papers (see references below). The idea of the method is to take some derivatives of a given master integral with respect to kinematical invariants and masses. Then the result of this differentiation is written in terms of Feynman integrals of the given family and, according to the known reduction, in terms of the master integrals. Therefore, one obtains a system of differential equations for the master integrals which can be solved with appropriate boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Presumably, this can be done using multiple polylogarithms (11.43).

  2. 2.

    Simple instructive examples can be found also in the reviews [1, 6, 36].

References

  1. U. Aglietti, hep-ph/0408014 (2004).

    Google Scholar 

  2. U. Aglietti, R. Bonciani, Nucl. Phys. B 668, 3 (2003)

    Article  ADS  MATH  Google Scholar 

  3. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Phys. Lett. B 600, 57 (2004)

    Article  ADS  Google Scholar 

  4. U. Aglietti, R. Bonciani, Nucl. Phys. B 698, 277 (2004)

    Article  ADS  MATH  Google Scholar 

  5. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Phys. Lett. B 595, 432 (2004)

    Article  ADS  Google Scholar 

  6. M. Argeri, P. Mastrolia, Int. J. Mod. Phys. A 22, 4375 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M. Argeri, P. Mastrolia, E. Remiddi, Nucl. Phys. B 631, 388 (2002)

    Article  ADS  MATH  Google Scholar 

  8. M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. Lett. 93, 201805 (2004)

    Article  ADS  Google Scholar 

  9. S. Bekavac, A.G. Grozin, D. Seidel, V.A. Smirnov, Nucl. Phys. B 819, 183 (2009), http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp09/ttp09-08/Readme

  10. W. Bernreuther et al., Nucl. Phys. B 706, 245 (2005)

    Article  ADS  MATH  Google Scholar 

  11. T.G. Birthwright, E.W.N. Glover, P. Marquard, JHEP 0409, 042 (2004)

    Article  ADS  Google Scholar 

  12. R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi, J.J. van der Bij, Nucl. Phys. B 681, 261 (2004)

    Article  ADS  Google Scholar 

  13. R. Bonciani, P. Mastrolia, E. Remiddi, Nucl. Phys. B 661, 289 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. Bonciani, P. Mastrolia, E. Remiddi, Nucl. Phys. B 676, 399 (2004)

    Article  ADS  Google Scholar 

  15. R. Bonciani, P. Mastrolia, E. Remiddi, Nucl. Phys. B 690, 138 (2004)

    Article  ADS  MATH  Google Scholar 

  16. M. Caffo, H. Czyż, S. Laporta, E. Remiddi, Nuovo Cim. A 111, 365 (1998)

    ADS  Google Scholar 

  17. M. Caffo, H. Czyż, S. Laporta, E. Remiddi, Acta Phys. Polon. B 29, 2627 (1998)

    Google Scholar 

  18. M. Caffo, H. Czyż, E. Remiddi, Nucl. Phys. B 581, 274 (2000)

    Article  ADS  Google Scholar 

  19. M. Caffo, H. Czyż, E. Remiddi, Nucl. Phys. B 611, 503 (2001)

    Article  ADS  MATH  Google Scholar 

  20. F. Chavez, C. Duhr, arXiv:1209.2722 [hep-ph] (2012).

    Google Scholar 

  21. K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981)

    Article  ADS  Google Scholar 

  22. M. Czakon, J. Gluza, T. Riemann, Nucl. Phys. Proc. Suppl. 135, 83 (2004)

    Article  ADS  Google Scholar 

  23. A.I. Davydychev, MYu. Kalmykov. Nucl. Phys. B 699, 3 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J. Fleischer, MYu. Kalmykov, A.V. Kotikov, Phys. Lett. B 462, 169 (1999)

    Article  ADS  Google Scholar 

  25. T. Gehrmann, E. Remiddi, Nucl. Phys. B 580, 485 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. T. Gehrmann, E. Remiddi, Nucl. Phys. B 601, 248 (2001)

    Article  ADS  Google Scholar 

  27. T. Gehrmann, E. Remiddi, Nucl. Phys. B 601, 287 (2001)

    Article  ADS  Google Scholar 

  28. T. Gehrmann, E. Remiddi, Comput. Phys. Commun. 144, 200 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. T. Gehrmann, E. Remiddi, Comput. Phys. Commun. 141, 296 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. T. Gehrmann, E. Remiddi, Nucl. Phys. B 640, 379 (2002)

    Article  ADS  MATH  Google Scholar 

  31. A.V. Kotikov, Phys. Lett. B 254, 158 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  32. A.V. Kotikov, Phys. Lett. B 259, 314 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  33. A.V. Kotikov, Phys. Lett. B 267, 123 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  34. A.V. Kotikov, Mod. Phys. Lett. A 6(677), 3133 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. A.V. Kotikov, Int. J. Mod. Phys. A 7, 1977 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. A.V. Kotikov, hep-ph/0102178 (2001).

    Google Scholar 

  37. S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  38. S. Laporta, P. Mastrolia, E. Remiddi, Nucl. Phys. B 688, 165 (2004)

    Article  ADS  MATH  Google Scholar 

  39. S. Laporta, E. Remiddi, Phys. Lett. B 379, 283 (1996)

    Article  ADS  Google Scholar 

  40. S. Laporta, E. Remiddi, Acta Phys. Polon. B 28, 959 (1997)

    Google Scholar 

  41. S. Laporta, E. Remiddi, Nucl. Phys. B 704, 349 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. P. Mastrolia, E. Remiddi, Nucl. Phys. B 657, 397 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  43. K. Melnikov, T. van Ritbergen, Phys. Lett. B 482, 99 (2000)

    Article  ADS  Google Scholar 

  44. K. Melnikov, T. van Ritbergen, Nucl. Phys. B 591, 515 (2000)

    Article  ADS  Google Scholar 

  45. F. Moriello, private communication.

    Google Scholar 

  46. E. Remiddi, Nuovo Cim. A 110, 1435 (1997)

    ADS  Google Scholar 

  47. E. Remiddi, Acta Phys. Polon. B 34, 5311 (2003)

    ADS  Google Scholar 

  48. E. Remiddi, J.A.M. Vermaseren, Int. J. Mod. Phys. A 15, 725 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Y. Schröder, Nucl. Phys. Proc. Suppl. 116, 402 (2003)

    Article  ADS  MATH  Google Scholar 

  50. Y. Schröder, A. Vuorinen, hep-ph/0311323 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Smirnov .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smirnov, V.A. (2012). Evaluation by Differential Equations. In: Analytic Tools for Feynman Integrals. Springer Tracts in Modern Physics, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34886-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34886-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34885-3

  • Online ISBN: 978-3-642-34886-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics