Skip to main content

Feynman Integrals: Basic Definitions and Tools

  • Chapter
  • First Online:
Analytic Tools for Feynman Integrals

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 250))

  • 3757 Accesses

Abstract

In this chapter, basic definitions for Feynman integrals are given, ultraviolet (UV), infrared (IR) and collinear divergences are characterized, and basic tools such as alpha parameters are presented. Various kinds of regularizations, in particular dimensional one, are presented and properties of dimensionally regularized Feynman integrals are formulated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When dealing with graphs and Feynman integrals one usually does not bother about the mathematical definition of the graph and thinks about something that is built of lines and vertices. So, a graph is an ordered family \(\{\mathcal{V}, \mathcal{L},\pi _{\pm }\}\), where \(\mathcal{V}\) is the set of vertices, \(\mathcal{L}\) is the set of lines, and \(\pi _{\pm }:\mathcal{L}\rightarrow \mathcal{V}\) are two mappings that correspond the initial and the final vertex of a line. By the way, mathematicians use the word ‘edge’, rather than ‘line’.

  2. 2.

    called also the sunrise diagram, or the London transport diagram.

  3. 3.

    In fact, the matrix \(A\) involved here equals \(e \beta e^+\) with the elements of an arbitrarily chosen column and row with the same number deleted. Here \(e\) is the incidence matrix of the graph, i.e. \(e_{il}=\pm 1\) if the vertex \(i\) is the beginning/end of the line \(l\), \(e^+\) is its transpose and \(\beta \) consists of the numbers \(1/\alpha _l\) on the diagonal—see, e.g., [23].

  4. 4.

    An alternative definition of algebraic character [19, 35, 38] (see also [13]) exists and is based on certain axioms for integration in a space with non-integer dimension. It is unclear how to perform the analysis within such a definition, for example, how to apply the operations of taking a limit, differentiation, etc. to algebraically defined Feynman integrals in \(d\) dimensions, in order to say something about the analytic properties with respect to momenta and masses and the parameter of dimensional regularization. After evaluating a Feynman integral according to the algebraic rules, one arrives at some concrete function of these parameters but, before integration, one is dealing with an abstract algebraic object. Let us remember, however, that, in practical calculations, one usually does not bother about precise definitions. From the purely pragmatic point of view, it is useless to think of a diagram when it is not calculated. On the other hand, from the pure theoretical and mathematical point of view, such a position is beneath criticism.

  5. 5.

    Besides [11], the problem of defining UV and IR divergent Feynman integrals within dimensional regularization was studied in [10] where Mellin–Barnes integrals were applied for this purpose.

  6. 6.

    These arguments can be found, for example, in [20], and, ironically, even in a pure mathematical book [16].

References

  1. M. Beneke, V.A. Smirnov, Nucl. Phys. B 522, 321 (1998)

    Article  ADS  Google Scholar 

  2. T. Binoth, G. Heinrich, Nucl. Phys. B 585, 741 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. T. Binoth, G. Heinrich, Nucl. Phys. B 680, 375 (2004)

    Article  ADS  MATH  Google Scholar 

  4. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125 (1995)

    Article  ADS  Google Scholar 

  5. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 55, 5853 (1997)

    Article  ADS  Google Scholar 

  6. C. Bogner, S. Weinzierl, Feynman graph polynomials. Int. J. Mod. Phys. A 25, 2585 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. N.N. Bogoliubov, D.V. Shirkov, Introduction to Theory of Quantized Fields, 3rd edn. (Wiley, New York, 1983)

    Google Scholar 

  8. C.G. Bollini, J.J. Giambiagi, Nuovo Cim. B 12, 20 (1972)

    Google Scholar 

  9. P. Breitenlohner, D. Maison, Commun. Math. Phys. 52, 11, 39, 55 (1977)

    Google Scholar 

  10. C. De Calan, A.P.C. Malbouisson, Commun. Math. Phys. 90, 413 (1983)

    Article  ADS  Google Scholar 

  11. K.G. Chetyrkin, V.A. Smirnov, Teor. Mat. Fiz. 56, 206 (1983)

    MathSciNet  Google Scholar 

  12. K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981)

    Article  ADS  Google Scholar 

  13. J.C. Collins, Renormalization (Cambridge University Press, Cambridge, 1984)

    Book  MATH  Google Scholar 

  14. A.I. Davydychev, V.A. Smirnov, Nucl. Phys. B 554, 391 (1999)

    Article  ADS  Google Scholar 

  15. A. Erdélyi (ed.), Higher Transcendental Functions, vols. 1 and 2 (McGraw-Hill, New York, 1954)

    Google Scholar 

  16. I.M. Gel’fand, G.E. Shilov, Generalized Functions, vol. 1 (Academic Press, New York, London, 1964)

    MATH  Google Scholar 

  17. A.G. Grozin, Heavy Quark Effective Theory (Springer, Heidelberg, 2004)

    Book  Google Scholar 

  18. K. Hepp, Commun. Math. Phys. 2, 301 (1966)

    Article  ADS  MATH  Google Scholar 

  19. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972)

    Google Scholar 

  20. G. Leibbrandt, Rev. Mod. Phys. 47, 849 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  21. G.P. Lepage et al., Phys. Rev. D 46, 4052 (1992)

    Article  ADS  Google Scholar 

  22. A.V. Manohar, M.B. Wise, Heavy Quark Physics (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  23. N. Nakanishi, Graph Theory and Feynman Integrals (Gordon and Breach, New York, 1971)

    MATH  Google Scholar 

  24. W.L. van Neerven, Nucl. Phys. B 268, 453 (1986)

    Article  ADS  Google Scholar 

  25. M. Neubert, Phys. Rep. 245, 259 (1994)

    Article  ADS  Google Scholar 

  26. W. Pauli, F. Villars, Rev. Mod. Phys. 21, 434 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. K. Pohlmeyer, J. Math. Phys. 23, 2511 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  28. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, vols. 1–3 (Gordon and Breach, New York, 1986–1990)

    Google Scholar 

  29. A.V. Smirnov, http://science.sander.su/Tools-UF.htm

  30. V.A. Smirnov, Renormalization and Asymptotic Expansions (Birkhäuser, Basel, 1991)

    MATH  Google Scholar 

  31. V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses (Springer, Heidelberg, 2002)

    MATH  Google Scholar 

  32. E.R. Speer, J. Math. Phys. 9, 1404 (1968)

    Article  ADS  Google Scholar 

  33. E.R. Speer, Commun. Math. Phys. 23, 23 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. E.R. Speer, Commun. Math. Phys. 25, 336 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  35. E.R. Speer, in Renormalization Theory, eds. G. Velo and A.S. Wightman (Reidel, Dodrecht, 1976) p. 25.

    Google Scholar 

  36. E.R. Speer, Ann. Inst. H. Poincaré 23, 1 (1977)

    MathSciNet  Google Scholar 

  37. B.A. Thacker, G.P. Lepage, Phys. Rev. D 43, 196 (1991)

    Article  ADS  Google Scholar 

  38. K.G. Wilson, Phys. Rev. D 7, 2911 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  39. http://www.wolfram.com

  40. O.I. Zavialov, Renormalized Quantum Field Theory (Kluwer Academic Publishers, Dodrecht, 1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Smirnov .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smirnov, V.A. (2012). Feynman Integrals: Basic Definitions and Tools. In: Analytic Tools for Feynman Integrals. Springer Tracts in Modern Physics, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34886-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34886-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34885-3

  • Online ISBN: 978-3-642-34886-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics