Skip to main content

Multipath Spanners via Fault-Tolerant Spanners

  • Conference paper
Design and Analysis of Algorithms (MedAlg 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7659))

Included in the following conference series:

  • 1029 Accesses

Abstract

An s-spanner H of a graph G is a subgraph such that the distance between any two vertices u and v in H is greater by at most a multiplicative factor s than the distance in G. In this paper, we focus on an extension of the concept of spanners to p-multipath distance, defined as the smallest length of a collection of p pairwise (vertex or edge) disjoint paths. The notion of multipath spanners was introduced in [15,16] for edge (respectively, vertex) disjoint paths. This paper significantly improves the stretch-size tradeoff result of the two previous papers, using the related concept of fault-tolerant s-spanners, introduced in [6] for general graphs. More precisely, we show that at the cost of increasing the number of edges by a polynomial factor in p and s, it is possible to obtain an s-multipath spanner, thereby improving on the large stretch obtained in [15,16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Near-linear cost sequential and distributed constructions of sparse neighborhood covers. In: Proc. 34th IEEE FOCS, pp. 638–647 (1993)

    Google Scholar 

  3. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polylogarithmic time. In: Proc. 29th ACM PODC, pp. 410–419 (2010)

    Google Scholar 

  4. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In: Proc. 47th IEEE FOCS, pp. 591–602 (2006)

    Google Scholar 

  5. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse distance preservers and additive spanners. In: Proc. 14th ACM-SIAM SODA, pp. 414–423 (2003)

    Google Scholar 

  6. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for general graphs. In: Proc. 41st ACM STOC, pp. 435–444 (2009)

    Google Scholar 

  7. Cowen, L.: Compact routing with minimum stretch. J. Algo. 38, 170–183 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cowen, L., Wagner, C.: Compact roundtrip routing in directed networks. J. Algo. 50, 79–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dinitz, M., Krauthgamer, R.: Fault-Tolerant Spanners: Better and Simpler. In: Proc. 30th ACM PODC, pp. 169–178 (2011)

    Google Scholar 

  10. Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan, A.: Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons. J. Computer and System Sciences 71, 467–479 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elkin, M.: Computing almost shortest paths. ACM Tr. Algo. 1, 283–323 (2005)

    Article  MathSciNet  Google Scholar 

  12. Elkin, M.: A near-optimal distributed fully dynamic algorithm for maintaining sparse spanners. In: Proc. 26th ACM PODC, pp. 185–194 (2007)

    Google Scholar 

  13. Elkin, M., Zhang, J.: Efficient algorithms for constructing (1 + ε,β)-spanners in the distributed and streaming models. In: Proc. 23rd ACM PODC, pp. 160–168 (2004)

    Google Scholar 

  14. Farley, A.M., Proskurowski, A., Zappala, D., Windisch, K.: Spanners and message distribution in networks. Discrete Applied Mathematics 137(2), 159–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gavoille, C., Godfroy, Q., Viennot, L.: Multipath Spanners. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 211–223. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Gavoille, C., Godfroy, Q., Viennot, L.: Node-Disjoint Multipath Spanners and Their Relationship with Fault-Tolerant Spanners. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 143–158. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Jacquet, P., Viennot, L.: Remote spanners: what to know beyond neighbors. In: Proc. 23rd IEEE IPDPS (2009)

    Google Scholar 

  18. Kushman, N., Kandula, S., Katabi, D., Maggs, B.M.: R-BGP: Staying connected in a connected world. In: Proc. 4th NSDI (2007)

    Google Scholar 

  19. Mueller, S., Tsang, R.P., Ghosal, D.: Multipath Routing in Mobile Ad Hoc Networks: Issues and Challenges. In: Calzarossa, M.C., Gelenbe, E. (eds.) MASCOTS 2003. LNCS, vol. 2965, pp. 209–234. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Nasipuri, A., Castañeda, R., Das, S.R.: Performance of multipath routing for on-demand protocols in mobile ad hoc networks. Mobile Networks and Applications 6(4), 339–349 (2001)

    Article  MATH  Google Scholar 

  21. Peleg, D., Scháffer, A.A.: Graph spanners. J. Graph Theory, 99–116 (1989)

    Google Scholar 

  22. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Computing 18(4), 740–747 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pettie, S.: Low Distortion Spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 78–89. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Pan, P., Swallow, G., Atlas, A.: Fast Reroute Extensions to RSVP-TE for LSP Tunnels. RFC 4090 (Proposed Standard) (2005)

    Google Scholar 

  25. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in directed graphs. ACM Trans. Algorithms 3(4), Article 29 (2008)

    Google Scholar 

  26. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. SPAA, pp. 1–10 (2001)

    Google Scholar 

  27. Thorup, M., Zwick, U.: Approximate distance oracles. JACM 52, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Woodruff, D.P.: Lower bounds for additive spanners, emulators, and more. In: Proc. 47th IEEE FOCS, pp. 389–398 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chechik, S., Godfroy, Q., Peleg, D. (2012). Multipath Spanners via Fault-Tolerant Spanners. In: Even, G., Rawitz, D. (eds) Design and Analysis of Algorithms. MedAlg 2012. Lecture Notes in Computer Science, vol 7659. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34862-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34862-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34861-7

  • Online ISBN: 978-3-642-34862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics