Four Quantitative Metrics Describing Narrative Conflict

  • Stephen G. Ware
  • R. Michael Young
  • Brent Harrison
  • David L. Roberts
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7648)


Conflict is an essential element of interesting stories. In previous work, we proposed a formal model of narrative conflict along with 4 quantitative dimensions which can be used to distinguish one conflict from another based on context: balance, directness, intensity, and resolution. This paper presents the results of an experiment designed to measure how well these metrics predict the responses of human readers when asked to measure these same values in a set of four stories. We conclude that our metrics are able to rank stories similarly to human readers for each of these four dimensions.


conflict narrative metrics planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, H.P.: The Cambridge Introduction to Narrative. Cambridge U. Pr. (2008)Google Scholar
  2. 2.
    Barber, H., Kudenko, D.: Dynamic Generation of Dilemma-Based Interactive Narratives. In: AIIDE (2007)Google Scholar
  3. 3.
    Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35(99-109), 4 (1943)Google Scholar
  4. 4.
    Booth, M.: The ai systems of left 4 dead. In: Keynote, AIIDE (2009)Google Scholar
  5. 5.
    Crawford, C.: Chris Crawford on Game Design. New Riders (2003)Google Scholar
  6. 6.
    Egri, L.: The Art of Dramatic Writing. Wildside (1988)Google Scholar
  7. 7.
    Fikes, R., Nilsson, N.J.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. AI 2(3/4), 189–208 (1971)zbMATHGoogle Scholar
  8. 8.
    Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions, 3rd edn. John Wiley & Sons (2003)Google Scholar
  9. 9.
    Gerrig, R.J.: Experiencing Narrative Worlds: On the Psychological Activities of Reading. Yale U. Pr. (1993)Google Scholar
  10. 10.
    Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal 29(2), 147–160 (1950)MathSciNetGoogle Scholar
  11. 11.
    Herman, D., Jahn, M., Ryan, M.L.: Routledge Encyclopedia of Narrative Theory. Routledge (2005)Google Scholar
  12. 12.
    Kendall, M.: Rank Correlation Methods. Griffin (1948)Google Scholar
  13. 13.
    Peinado, F., Gervás, P.: Evaluation of automatic generation of basic stories. New Generation Computing 24(3), 289–302 (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Pérez y Pérez, R., Sharples, M.: MEXICA: A Computer Model of a Cognitive Account of Creative Writing. Journal of Experimental & Theoretical AI 13(2), 119–139 (2001)zbMATHGoogle Scholar
  15. 15.
    Ryan, M.L.: Possible Worlds, Artificial Intelligence, and Narrative Theory. Indiana U. Pr. (1991)Google Scholar
  16. 16.
    Szilas, N.: IDtension: A Narrative Engine for Interactive Drama. In: TIDSE (2003)Google Scholar
  17. 17.
    Ware, S.G., Young, R.M.: CPOCL: A Narrative Planner Supporting Conflict. In: AIIDE (2011)Google Scholar
  18. 18.
    Ware, S.G., Young, R.M.: Toward a Computational Model of Narrative Conflict. Technical Report DGRC-2011-01, DGRC, North Carolina State University, Raleigh, NC, USA (2011),
  19. 19.
    Ware, S.G., Young, R.M.: Validating a Plan-Based Model of Narrative Conflict. In: FDG (2012)Google Scholar
  20. 20.
    Yannakakis, G.N.: How to model and augment player satisfaction: A review. In: 1st Workshop on Child, Computer, and Interaction (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stephen G. Ware
    • 1
  • R. Michael Young
    • 1
  • Brent Harrison
    • 1
  • David L. Roberts
    • 1
  1. 1.Digital Games Research CenterNorth Carolina State UniversityRaleighUSA

Personalised recommendations