Skip to main content

In-Situ Permeability from Integrated Poroelastic Reflection Coefficients

  • Chapter
  • First Online:
Multi-Component Acoustic Characterization of Porous Media

Part of the book series: Springer Theses ((Springer Theses))

  • 1176 Accesses

Abstract

A reliable estimate of the in-situ permeability of a porous layer in the subsurface is extremely difficult to obtain. We have observed that at the field seismic frequency band the poroelastic behavior for different seismic wavemodes can differ in such a way that their combination gives unique estimates of in-situ permeability and porosity simultaneously. This is utilized in the integration of angle- and frequency-dependent poroelastic reflection coefficients in a cost function. Realistic numerical simulations show that the estimated values of permeability and porosity are robust against uncertainties in the employed poroelastic mechanism and in the data. Potential applications of this approach exist in hydrocarbon exploration, hydrogeology, and geotechnical engineering.

This chapter has been published as a journal paper in Geophysical Research Letters 37, L12303 (van Dalen et al. 2010) and is reproduced with permission. Note that minor changes have been introduced to make the text consistent with the other chapters of this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, L. A., & Hampton, L. D. (1980). Acoustics of gas-bearing sediments. I. Background. Journal of the Acoustical Society of America, 67(6), 1865–1889.

    Google Scholar 

  • Bedford, A., & Stern, M. (1983). A model for wave propagation in gassy sediments. Journal of the Acoustical Society of America, 73(2), 409–417.

    Google Scholar 

  • Berryman, J. G. (1980). Confirmation of Biot’s theory. Applied Physics Letters, 37(4), 382–384.

    Google Scholar 

  • Buchanan, J. L. (2006). A comparison of broadband models for sand sediments. Journal of the Acoustical Society of America, 120(6), 3584–3598.

    Google Scholar 

  • Burns, D. R. (1990). Acoustic waveform logs and the in-situ measurement of permeability—A review. In F. L. Paillet & W. T. Saunders (Eds.), Geophysical Applications for Geotechnical Investigations. Philadelphia: ASTM.

    Google Scholar 

  • Chapman, M., Liu, E., & Li, X.-Y. (2006). The influence of fluid-sensitive dispersion and attenuation on AVO analysis. Geophysical Journal International, 167, 89–105.

    Google Scholar 

  • De Barros, L., & Dietrich, M. (2008). Perturbation of the seismic reflectivity of a fluid-saturated depth-dependent poroelastic medium. Journal of the Acoustical Society of America, 123(3), 1409–1420.

    Article  Google Scholar 

  • Dutta, N. C., & Odé, H. (1983). Seismic reflections from a gas-water contact. Geophysics, 48(2), 148–162.

    Google Scholar 

  • Ghose, R., & Goudswaard, J. (2004). Integrating S-wave seismic reflection data and cone-penetration-test data using a multiangle multiscale approach. Geophysics, 69(2), 440–459.

    Google Scholar 

  • Ghose, R., & Slob, E. C. (2006). Quantitative integration of seismic and GPR reflections to derive unique estimates of water saturation and porosity in soil. Geophysical Research Letters, 33, L05404.

    Google Scholar 

  • Goloshubin, G., Silin, D., Vingalov, V., Takkand, G., & Latfullin, M. (2008). Reservoir permeability from seismic attribute analysis. The Leading Edge, 27(3), 376–381.

    Google Scholar 

  • Holvik, E., & Amundsen, L. (2005). Elimination of the overburden response from multicomponent source and receiver seismic data, with source designature and decomposition into PP-, PS-, SP-, and SS-wave responses. Geophysics, 70(2), S43–S59.

    Google Scholar 

  • Johnson, D. L., Plona, T. J., & Kojima, H. (1994). Probing porous media with first and second sound. II. Acoustic properties of water-saturated porous media. Journal of Applied Physics, 76(1), 115–125.

    Google Scholar 

  • Lin, L., Peterson, M. L., Greenberg, A. R., & McCool, B. A. (2009). In situ measurement of permeability. Journal of the Acoustical Society of America, 125(4), EL123–EL128.

    Google Scholar 

  • Malagnini, L. (1996). Velocity and attenuation structure of very shallow soils: evidence for a frequency-dependent Q. Bulletin of the Seismological Society of America, 86(5), 1471–1486.

    Google Scholar 

  • Müller, T. M., & Gurevich, B. (2005). A first-order statistical smoothing approximation for the coherent wave field in random porous media. Journal of the Acoustical Society of America, 117(4), 1796–1805.

    Google Scholar 

  • Müller, T. M., Lambert, G., & Gurevich, B. (2005). Dynamic permeability of porous rocks and its seismic signatures. Geophysics, 72(5), E149–E158.

    Google Scholar 

  • Pride, S. R., Harris, J. M., Johnson, D. L., Mateeva, A., Nihei, K. T., Nowack, R. L., et al. (2003). Permeability dependence of seismic amplitudes. The Leading Edge, 22(6), 518–525.

    Google Scholar 

  • Pride, S. R., Berryman, J. G., & Harris, J. M. (2004). Seismic attenuation due to wave-induced flow. Journal of Geophysical Research, 109, B01201.

    Google Scholar 

  • Ratnam, S., Soga, K., & Whittle, R. W. (2005). A field permeability measurement technique using a conventional self-boring pressuremeter. Géotechnique, 55(7), 527–537.

    Google Scholar 

  • Schalkwijk, K. M., Wapenaar, C. P. A., & Verschuur, D. J. (2003). Adaptive decomposition of multicomponent ocean-bottom seismic data into downgoing and upgoing P- and S-waves. Geophysics, 68(3), 1091–1102.

    Google Scholar 

  • Smeulders, D. M. J., & van Dongen, M. E. H. (1997). Wave propagation in porous media containing a dilute gas-liquid mixture: theory and experiments. Journal of Fluid Mechanics, 343, 351–373.

    Google Scholar 

  • van Dalen, K. N., Ghose, R., Drijkoningen, G. G., & Smeulders, D. M. J. (2010). In-situ permeability from integrated poroelastic reflection coefficients. Geophysical Research Letters, 37, L12303.

    Google Scholar 

  • Vogelaar, B. B. S. A. (2009). Fluid Effect on Wave Propagation in Heterogeneous Porous Media. Ph.D. thesis, Delft University of Technology, Delft.

    Google Scholar 

  • White, J. E. (1975). Computed seismic speeds and attenuation in rocks with partial gas saturation. Journal of Fluid Mechanics, 40(2), 224–232.

    Google Scholar 

  • Wijngaarden, L. (1972). One-dimensional flow of liquids containing small gas bubbles. Annual Review of Fluid Mechanics, 4, 369–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel N. van Dalen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Dalen, K.N. (2013). In-Situ Permeability from Integrated Poroelastic Reflection Coefficients. In: Multi-Component Acoustic Characterization of Porous Media. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34845-7_8

Download citation

Publish with us

Policies and ethics