Skip to main content

Pseudo Interface Waves Observed at the Fluid/Porous-Medium Interface: A Comparison of Two Methods

  • Chapter
  • First Online:
Multi-Component Acoustic Characterization of Porous Media

Part of the book series: Springer Theses ((Springer Theses))

  • 1179 Accesses

Abstract

At the fluid/porous-medium interface the pseudo-Rayleigh (pR) and pseudo-Stoneley (\(pSt\)) waves exist. The relation with the corresponding poles in the slowness plane is not unambiguous but depends on the choice of branch cuts. For a point-force excitation, the far-field Green’s functions are computed using vertical branch cuts (method I) implying that the \(pR\)- and \(pSt\)-poles obey the radiation condition. Then, a separate pseudo interface wave is entirely captured by the corresponding pole residue because the loop integral along a branch cut contributes to a body wave only. When hyperbolic branch cuts are used (method II) the poles lie on the “principal” Riemann sheet. Then, also the loop integrals necessarily contribute to the \(pR\)-wave because the \(pR\)-pole is different from that in method I. They do not contribute to the \(pSt\)-wave when the \(pSt\)-pole lies on the principal Riemann sheet because the pole is identical to that in method I. When the \(pSt\)-pole has migrated to another Riemann sheet, however, the \(pSt\)-wave is fully captured by the loop integrals. In conclusion, the phase velocity and attenuation of a separate pseudo interface wave can be computed from the pole location in method I, but should be extracted from the full response in method II.

This chapter has been published as a journal paper in J. Acoust. Soc. Am. 129 (5), 2912–2922 (van Dalen et al. 2011) and is reproduced with permission. Note that minor changes have been introduced to make the text consistent with the other chapters of this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz, M., & Stegun, I. A. (1972). Handbook of Mathematical Functions. New York: Dover.

    Google Scholar 

  • Achenbach, J. D. (1973). Wave Propagation in Elastic Solids. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Aki, K., & Richards, P. G. (1980). Quantitative Seismology. New York: Freeman and Company.

    Google Scholar 

  • Albers, B. (2006). Monochromatic surface waves at the interface between poroelastic and fluid half-spaces. Proceedings of the Royal Society A, 462, 701–723.

    Article  Google Scholar 

  • Allard, J. F., Henry, M., Glorieux, C., Petillon, S., & Lauriks, W. (2003). Laser-induced surface modes at an air-porous medium interface. Journal of Applied Physics, 93(2), 1298–1304.

    Article  Google Scholar 

  • Allard, J. F., Henry, M., Glorieux, C., Lauriks, W., & Petillon, S. (2004). Laser-induced surface modes at water-elastic and poroelastic interfaces. Journal of Applied Physics, 95(2), 528–535.

    Article  Google Scholar 

  • Biot, M. A. (1956a). Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. Journal of the Acoustical Society of America, 28, 168–178.

    Article  Google Scholar 

  • Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. Journal of the Acoustical Society of America, 28, 179–191.

    Article  Google Scholar 

  • Biot, M. A., & Willis, D. G. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24, 594–601.

    Google Scholar 

  • Brekhovskikh, L. M. (1960). Waves in Layered Media. New York: Academic Press.

    Google Scholar 

  • Burns, D. R. (1990). Acoustic waveform logs and the in-situ measurement of permeability—A review. In F. L. Paillet & W. T. Saunders (Eds.), Geophysical Applications for Geotechnical Investigations. Philadelphia: ASTM.

    Google Scholar 

  • Deresiewicz, H., & Skalak, R. (1963). On uniqueness in dynamic poroelasticity. Bulletin of the Seismological Society of America, 53, 783–788.

    Google Scholar 

  • Edelman, I., & Wilmanski, K. (2002). Asymptotic analysis of surface waves at vacuum/porous medium and liquid/porous medium interfaces. Continuum Mechanics and Thermodynamics, 14, 25–44.

    Article  Google Scholar 

  • Feng, S., & Johnson, D. L. (1983a). High-frequency acoustic properties of a fluid/porous solid interface. I. New surface mode. Journal of the Acoustical Society of America, 74(3), 906–914.

    Article  Google Scholar 

  • Feng, S., & Johnson, D. L. (1983b). High-frequency acoustic properties of a fluid/porous solid interface. II. The 2D reflection Green’s function. Journal of the Acoustical Society of America, 74(3), 915–924.

    Article  Google Scholar 

  • Fuchs, B. A., Shabat, B. V., & Berry, J. (1964). Functions of a Complex Variable and Some of Their Applications. Oxford: Pergamon Press.

    Google Scholar 

  • Gradshteyn, I. S., & Ryzhik, I. M. (1980). Table of Integrals, Series and Products. London: Academic Press.

    Google Scholar 

  • Gubaidullin, A. A., Kuchugurina, O. Y., Smeulders, D. M. J., & Wisse, C. J. (2004). Frequency-dependent acoustic properties of a fluid/porous solid interface. Journal of the Acoustical Society of America, 116(3), 1474–1480.

    Article  Google Scholar 

  • Harris, J. G. (2001). Linear Elastic Waves. Cambridge: Cambridge University Press

    Google Scholar 

  • Jeffreys, H., & Jeffreys, B. S. (1946). Methods of Mathematical Physics. New York: Cambridge University Press.

    Google Scholar 

  • Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous-media. Journal of Fluid Mechanics, 176, 379–402.

    Article  Google Scholar 

  • Phinney, R. A. (1961). Propagation of leaking interface waves. Bulletin of the Seismological Society of America, 51(4), 527–555.

    Google Scholar 

  • Ricker, N. (1953). Wavelet contraction, wavelet expansion, and the control of seismic resolution. Geophysics, 18(4), 769–792.

    Article  Google Scholar 

  • Roever, W. L., Vining, T. F., & Strick, E. (1959). Propagation of elastic wave motion from an impulsive source along a fluid/solid interface. Philosophical Transactions of the Royal Society London, Series A, 251(1000), 455–523.

    Article  Google Scholar 

  • Rosenbaum, J. H. (1974). Synthetic microseismograms: Logging in porous formations. Geophysics, 39(1), 14–32.

    Article  Google Scholar 

  • Smeulders, D. M. J., Eggels, R. L. G. M., & van Dongen, M. E. H. (1992). Dynamic permeability: Reformulation of theory and new experimental and numerical data. Journal of Fluid Mechanics, 245, 211–227.

    Article  Google Scholar 

  • Tsang, L. (1978). Time-harmonic solution of the elastic head wave problem incorporating the influence of Rayleigh poles. Journal of the Acoustical Society of America, 63(5), 1302–1309.

    Article  Google Scholar 

  • van Dalen, K. N., Drijkoningen, G. G., & Smeulders, D. M. J. (2011). Pseudo interface waves observed at the fluid/porous-medium interface. A comparison of two methods. Journal of the Acoustical Society of America, 129, 2912–2922.

    Article  Google Scholar 

  • van der Hijden, J. H. M. T. (1984). Quantitative analysis of the pseudo-Rayleigh phenomenon. Journal of the Acoustical Society of America, 75(4), 1041–1047.

    Article  Google Scholar 

  • van der Waerden, B. L. (1952). On the method of saddle points. Applied Sciences Research, B2, 33–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel N. van Dalen .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Dalen, K.N. (2013). Pseudo Interface Waves Observed at the Fluid/Porous-Medium Interface: A Comparison of Two Methods. In: Multi-Component Acoustic Characterization of Porous Media. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34845-7_5

Download citation

Publish with us

Policies and ethics