Skip to main content

Impact of the 1783–1784   AD Laki Eruption on Cloud Drop Number Concentrations and the First Aerosol Indirect Effect

  • Chapter
  • First Online:
Modelling Tropospheric Volcanic Aerosol

Part of the book series: Springer Theses ((Springer Theses))

  • 629 Accesses

Abstract

Low-level clouds have long been recognised as playing a major role in modulating the Earth’s radiation budget (e.g., Klein and Hartman 1993). Thus, fully understanding the impact of volcanic eruptions on the climate system requires the assessment of how volcanic aerosol might affect the microphyscial properties of low-level clouds, which can subsequently mediate a cloud-radiative effect. The chapter presented here aims to assess the impact of the 1783–1784 AD Laki eruption on changes in cloud drop number concentration (CDNC) at low-level cloud altitude in order to quantify the magnitude of the first aerosol indirect effect (AIE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boucher O, Lohmann U (1995) The sulfate-CCN-cloud albedo effect, a sensitivity study with two general circulation models. Tellus Ser B 47:281–300

    Article  Google Scholar 

  • Chen P (1995) Isentropic cross-tropopause mass exchange in the extratropics. J Geophys Res 100:16661–16673

    Article  Google Scholar 

  • Chenet AL, Fluteau F, Courtillot V (2005) Modelling massive sulphate aerosol pollution, following the large 1783 Laki basaltic eruption. Earth Planet Sci Lett 236:721–731

    Article  Google Scholar 

  • Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Q J R Meteorol Soc 122:689–719

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Chen Z, Manning M, Marquis M, Averyt KB, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, pp 129–234

    Google Scholar 

  • Highwood EJ, Stevenson DS (2003) Atmospheric impact of the 1783–1784 Laki eruption: part II–climatic effect of sulphate aerosol. Atmos Chem Phys 3:1177–1189

    Article  Google Scholar 

  • Jones GS, Gregory JM, Stott PA, Tett SFB, Thorpe RB (2005) An AOGCM simulation of the climate response to a volcanic super-eruption. Clim Dyn 25:725–738

    Article  Google Scholar 

  • Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6:1587–1606

    Article  Google Scholar 

  • Kravitz B, Robock A (2011) Climate effects of high-latitude volcanic eruptions: role of the time of year. J Geophys Res 116:D01105

    Article  Google Scholar 

  • Levin Z, Cotton WR (eds) (2008) Aerosol pollution impact on precipitation: a scientific review. Springer, Berlin, p 386

    Google Scholar 

  • Nenes A and Seinfeld JH (2003) Parameterization of cloud droplet formation in global climate models. J Geophys Res 108(D14):4415. doi:10.1029/2002JD002911

    Google Scholar 

  • Oman L, Robock A, Stenchikov GL, Thordarson T, Koch D, Shindell DT, Gao C (2006a) Modeling the distribution of the volcanic aerosol cloud from the 1783–1784 Laki eruption. J Geophys Res 111:D12209. doi:10.1029/2005JD006899

    Article  Google Scholar 

  • Oman L, Robock A, Stenchikov GL, Thordarson T (2006b) High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys Res Lett 33:L18711. doi:10.1029/2006GL027665

    Article  Google Scholar 

  • Ortlieb L, Macharé J (1993) Former El Niño events: records from western South America. Global Planet Change 7:181–202

    Article  Google Scholar 

  • Penner JE, Andrea M, Annegarn H, Barrie L, Feichter J, Hegg D, Jayaraman A, Leaitch R, Murphy D, Nganga J, Pitari G et al (2001) The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y et al (eds) Climate change 2001. Cambridge University Press, Cambridge

    Google Scholar 

  • Pringle KJ, Carslaw KS, Spracklen DV, Mann GM, Chipperfield MP (2009) The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model. Atmos Chem Phys 9:4131–4144

    Article  Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Article  Google Scholar 

  • Robock A, Ammann CM, Oman L, Shindell D, Levis S, Stenchikov G (2009) Did the Toba volcanic eruption of \({\sim }74\,{\rm {ka}}\) B.P. produce widespread glaciation? J Geophys Res 114:D10107

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2287

    Article  Google Scholar 

  • Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–613

    Article  Google Scholar 

  • Stevenson DS, Johnson CE, Highwood EJ, Gauci V, Collins WJ, Derwent RG (2003b) Atmospheric impact of the 1783–1784 Laki eruption: part I chemistry modelling. Atmos Chem Phys 3:487–507

    Article  Google Scholar 

  • Thordarson T and Self S (2003) Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. J Geophys Res Atmospheres 108(D1):4011. doi:10.1029/2001JD002042

    Google Scholar 

  • Timmreck C, Graf HF, Lorenz SJ, Niemeier U, Zanchettin D, Matei D, Jungclaus JH, Crowley TJ (2010) Aerosol size confines climate response to volcanic super-eruptions. Geophys Res Lett 37:L24705

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, A. (2013). Impact of the 1783–1784   AD Laki Eruption on Cloud Drop Number Concentrations and the First Aerosol Indirect Effect. In: Modelling Tropospheric Volcanic Aerosol. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34839-6_5

Download citation

Publish with us

Policies and ethics