Skip to main content

Motivation and Background

  • Chapter
  • First Online:
Modelling Tropospheric Volcanic Aerosol

Part of the book series: Springer Theses ((Springer Theses))

  • 678 Accesses

Abstract

In summer 1783 the French naturalist M. Mourgue de Montredon was the first to link the presence of a sulphurous aerosol cloud in the atmosphere over Europe to volcanic activity in Iceland. Shortly thereafter B. Franklin, J. L. Christ and C. G. Kratzenstein drew similar conclusions independently from each other (Thordarson and Self 2003, and references therein). Meanwhile, the Icelandic priest Jón Steingrímsson documented the eruption in question—the 1783–1784  AD Laki eruption—in extensive detail (Steingrímsson 1788, 1998). Modern “Volcanology” itself is a young science with the atmospheric phenomena observed during the summer of 1783 being considered as the starting point for scientific documentation of the effects of volcanic activity on atmospheric composition, climate and society.

“ ... the sun appeared as a red ball of fire,

the moon was as red as blood, and when rays of their

light fell upon the earth it took on the same colour.

Jón Steingrímsson, 1783 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.volcano.si.edu/world/find_eruptions.cfm

  2. 2.

    Graf et al. (1997) defined “\(\mathrm{{SO}}_4\) burden efficiency” as the fractional contribution of a sulphur source to the \(\mathrm{{SO}}_4\) burden divided by the fractional source strength.

References

  • Abdul-Razzak H, Ghan SJ (2002) A parameterization of aerosol activation 3. Sectional representation. J Geophys Res 107(D3):4026 doi:10.1029/2001JD000483

    Google Scholar 

  • Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    Article  Google Scholar 

  • Allen AG, Oppenheimer C, Ferm M, Baxter PJ, Horrocks LA, Galle B, McGonigle AJS, Duffell HJ (2002) Primary sulfate aerosol and associated emissions from Masaya Volcano, Nicaragua. J Geophys Res 107(D23):4682 doi:10.1029/2002JD002120

    Google Scholar 

  • Andres RJ, Kasgnoc AD (1998) A time-averaged inventory of subaerial volcanic sulfur emissions. J Geophys Res 103:25251–25262

    Article  Google Scholar 

  • Angell JK, Korshover J (1985) Surface temperature changes following the six major volcanic episodes between 1780 and 1980. J Climate Appl Meteorol 24:937–951

    Article  Google Scholar 

  • Arakawa H (1955) Meteorological conditions of the great famines in the last half of the Tokugawa period. Jpn Meteorol Geophys 6:3–68

    Google Scholar 

  • Arnórsson S (2000) Exploitation of geothermal resources. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic press, San Diego, pp 1243–1258

    Google Scholar 

  • Barnes JE, Hofmann DJ (1997) Lidar measurements of stratospheric aerosol over Mauna Loa observatory. Geophys Res Lett 24:1923–1926

    Article  Google Scholar 

  • Baxter PJ (1990) Medical effects of volcanic eruptions. Bull Volcanol 52:532–544. doi:10.1007/BF00301534

    Article  Google Scholar 

  • Baxter PJ, Ing R, Falk H, French J, Stein GF, Bernstein RS, Merchant JA, Allard J (1981) Mount St Helens eruptions, May 18 to June 12, 1980: an overview of the acute health impact. JAMA 246:2585–2589

    Google Scholar 

  • Beerling DJ, Harfoot M, Lomax B, Pyle JA (2007) The stability of the stratospheric ozone layer during the end-Permian eruption of the siberian traps. Philos Trans R Soc A: Math Phys Eng Sci 365:1843–1866

    Article  Google Scholar 

  • Bekki S (1995) Oxidation of volcanic SO\(_2\)—a sink for stratospheric OH and H\(_2\)O. Geophys Res Lett 22:913–916

    Article  Google Scholar 

  • Bekki S, Pyle JA, Zhong W, Toumi R, Haigh JD, Pyle DM (1996) The role of microphysical and chemical processes in prolonging the climate forcing of the Toba eruption. Geophys Res Lett 23:2669–2672

    Article  Google Scholar 

  • Bluth G, Doiron S, Schnetzler C, Krueger A, Walters L (1992) Global tracking of the SO\(_2\) clouds from the June, 1991 Mount Pinatubo eruptions. Geophys Res Lett 19:151–154

    Article  Google Scholar 

  • Bobrowski N, Honninger G, Galle B, Platt U (2003) Detection of bromine monoxide in a volcanic plume. Nature 423:273–276

    Article  Google Scholar 

  • Bond A, Sparks RSJ (1976) The Minoan eruption of santorini, Greece. J Geol Soc 132:1–16

    Article  Google Scholar 

  • Boucher O, Lohmann U (1995) The sulfate-CCN-cloud albedo effect, a sensitivity study with two general circulation models. Tellus Ser B 47:281–300

    Article  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on northern hemisphere summer temperature over the past 600 years. Nature 393:450–455

    Article  Google Scholar 

  • Caldeira K, Rampino MR (1990) Carbon dioxide emissions from deccan volcanism and a K/T boundary greenhouse effect. Geophys Res Lett 17(9):1299–1302. doi:10.1029/GL017i009p01299

    Article  Google Scholar 

  • Carslaw KS, Boucher O, Spracklen DV, Mann GW, Rae JGL, Woodward S, Kulmala M (2010) A review of natural aerosol interactions and feedbacks within the Earth system. Atmos Chem Phys 10:1701–1737

    Article  Google Scholar 

  • Chenet AL, Fluteau F, Courtillot V (2005) Modelling massive sulphate aerosol pollution, following the large 1783 Laki basalticeruption. Earth Planet Sci Lett 236:721–731

    Article  Google Scholar 

  • Chin M, Jacob DJ (1996) Anthropogenic and natural contributions to tropospheric sulfate: a global model analysis. J Geophys Res 101:18691–18699

    Article  Google Scholar 

  • D’Arrigo RD, Jacoby GC (1999) Northern North American tree-ring evidence for regional temperature changes after major volcanic events. Clim Change 41:1–15. doi:10.1023/A:1005370210796

    Article  Google Scholar 

  • D’Arrigo R, Seager R, Smerdon JE, LeGrande AN, Cook ER (2011) The anomalous winter of 1783–1784: was the Laki eruption or an analog of the 2009–2010 winter to blame? Geophys Res Lett 38:L05706

    Article  Google Scholar 

  • Delmelle P (2003) Environmental impacts of tropospheric volcanic gas plumes. Geol Soc London Spec Publ 213:381–399. doi:10.1144/GSL.SP.2003.213.01.23

    Article  Google Scholar 

  • Delmelle P, Stix J, Baxter P, Garcia-Alvarez J, Barquero J (2002) Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua. Bull Volcan 64:423–434. doi:10.1007/s00445-002-0221-6

  • Durand M, Grattan J (1999) Extensive respiratory health effects of volcanogenic dry fog in 1783 inferred from european documentary sources. Environ Geochem Health 21:371–376. doi:10.1023/A:1006700921208

    Article  Google Scholar 

  • Durant AJ, Bonadonna C, Horwell CJ (2010) Atmospheric and environmental impacts of volcanic particulates. Elements 6:235–240

    Article  Google Scholar 

  • Eatough D, Caka F, Farber R (1994) The conversion of SO\(_2\) to sulfate in the atmosphere. Isr J Chem 34:301–314

    Google Scholar 

  • Feichter J, Lohmann U, Schult I (1997) The atmospheric sulfur cycle and its impact on the shortwave radiation. Clim Dyn 13:235–246

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Chen Z, Manning, M, Marquis M, Averyt KB, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, pp 129–234

    Google Scholar 

  • Gassó S (2008) Satellite observations of the impact of weak volcanic activity on marine clouds. J Geophys Res 113:D14S19

    Google Scholar 

  • Gauci V, Blake S, Stevenson DS, Highwood EJ (2008) Halving of the northern wetland CH4 source by a large Icelandic volcanic eruption. J Geophys Res 113:G00A11

    Google Scholar 

  • Gerlach T, Westrich H, Symonds R (1996) Pre-eruption vapor in Magma of the climatic Mount Pinatubo eruption: source of the giant stratospheric Sulfur Dioxide cloud. In: Newhall C, Punongbayan R (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines, 1126, Philippine Institute of Volcanology and Seismology, Quezon City and University of Washington Press, Seattle

    Google Scholar 

  • Graf HF (1992) Arctic radiation deficit and climate variability. Clim Dyn 7:19–28

    Article  Google Scholar 

  • Graf HF, Feichter J, Langmann B (1997) Volcanic sulfur emissions: estimates of source strength and its contribution to the global sulfate distribution. J Geophys Res 102:727–738

    Article  Google Scholar 

  • Grainger RG, Lambert A, Taylor FW, Remedios JJ, Rodgers CD, Corney M, Kerridge BJ (1993) Infrared absorption by volcanic stratospheric aerosols observed by ISAMS. Geophys Res Lett 20:1283–1286

    Article  Google Scholar 

  • Grattan JP, Pyatt FB (1994) Acid damage to vegetation following the Laki fissure eruption in 1783—an historical review. Sci Total Environ 151:241–247

    Article  Google Scholar 

  • Grattan J (1998) The distal impact of Icelandic volcanic gases and aerosols in Europe: a review of the 1783 Laki fissure eruption and environmental vulnerability in the late 20th century. Geol Soc London Eng Geol Spec Publ 15:97–103

    Google Scholar 

  • Grattan J (2005) Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies. Lithos 79:343–353

    Article  Google Scholar 

  • Grattan J, Durand M, Taylor S (2003) Illness and elevated human mortality in Europe coincident with the Laki fissure eruption. Volcanic Degassing, In: Oppenheimer C, Pyle D.M, Barclay J (eds) Geological society london special publications, vol. 213, pp 401–414

    Google Scholar 

  • Hamill P, Toon OB, Kiang CS (1977) Microphysical processes affecting stratospheric aerosol particles. J Atmos Sci 34:1104–1119

    Article  Google Scholar 

  • Hansell A, Oppenheimer C (2004) Health hazards from volcanic gases: a systematic literature review. Arch. Environ. Health 59:628–639

    Article  Google Scholar 

  • Hansell AL, Horwell CJ, Oppenheimer C (2006) The health hazards of volcanoes and geothermal areas. Occup Environ Med 63:149–156

    Article  Google Scholar 

  • Hassan FA (1998) Climatic change, Nile floods and civilization. NatResour 34:34–40

    Google Scholar 

  • Haughton DR, Roeder PL, Skinner BJ (1974) Solubility of Sulfur in mafic magmas. Econ Geol 69:451–467

    Article  Google Scholar 

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543

    Article  Google Scholar 

  • Highwood EJ, Stevenson DS (2003) Atmospheric impact of the 1783–1784 Laki eruption: part II—climatic effect of sulphate aerosol. Atmos Chem Phys 3:1177–1189

    Article  Google Scholar 

  • Hobbs P, Tuell J, Hegg D, Radke L, Eltgroth M (1982) Particles and gases in the emissions from the 1980–1981 volcanic eruptions of Mt. St. Helens. JGR-Atmos 87:1062–1086

    Google Scholar 

  • Jacoby GC, Workman KW, D’Arrigo RD (1999) Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit. Quat Sci Rev 18:1365–1371

    Article  Google Scholar 

  • Jakobsson SP (1979) Petrology of recent basalts from the Eastern volcanic zone, Iceland. Acta Naturalia Islandica 26:1–103

    Google Scholar 

  • Jones A, Roberts D, Slingo A (1994) A climate model study of indirect radiative forcing by anthropogenic sulfate aerosols. Nature 370:450–453

    Article  Google Scholar 

  • Joshi MM, Jones GS (2009) The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions. Atmos Chem Phys 9:6109–6118

    Article  Google Scholar 

  • Kellogg WW, Cadle RD, Allen ER, Lazrus AL, Martell EA (1972) The Sulfur cycle. Science 175:587–596

    Article  Google Scholar 

  • Kington JA (1988) The weather of the 1780’s over Europe. Cambridge University Press, New York, pp 180

    Google Scholar 

  • Koch D, Schmidt G, Field C (2006) Sulfur, sea salt and radionuclide aerosols in GISS Model. J Geophys Res 111:D06206

    Google Scholar 

  • Kondrashov D, Feliks Y, Ghil M (2005) Oscillatory modes of extended Nile River records (A.D. 622–1922). Geophys Res Lett 32:L10702

    Article  Google Scholar 

  • Koti S, Reddy KR, Reddy VR, Kakani VG, Zhao D (2005) Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. J Exp Bot 56:725–736

    Article  Google Scholar 

  • Kulmala M, VehkamÃki H, PetÃjà T, Lauri A, Kerminen VM, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176

    Article  Google Scholar 

  • Lamb HH (1970) Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance. Proc R Soc Lond A: Math Phys Sci 266:425–533

    Google Scholar 

  • Lambert G, Le Cloarec MF, Pennisi M (1988) Volcanic output of SO\(_2\) and trace metals: a new approach. Geochim Cosmochim Acta 52:39–42

    Article  Google Scholar 

  • Lohmann U, Feichter J (1997) Impact of sulfate aerosols on albedo and lifetime of clouds: a sensitivity study with the ECHAM4 GCM. J Geophys Res 102(D12):13685–13700

    Google Scholar 

  • Mann GW, Carslaw KS, Spracklen DV, Ridley DA, Manktelow PT, Chipperfield MP, Pickering SJ, Johnson CE (2010) Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geosci Model Dev 3:519–551

    Article  Google Scholar 

  • Mather TA (2008) Volcanism and the atmosphere: the potential role of the atmosphere in unlocking the reactivity of volcanic emissions. Philos Trans R Soc A: Math Phys Eng Sci 366:4581–4595

    Article  Google Scholar 

  • Mather T, Pyle DM, Oppenheimer C (2003) Tropospheric volcanic aerosol. In: Volcanism and the Earth’s atmosphere, of geophysical monograph, vol 139. American Geophysical Union (AGU), Washington, pp 189–212

    Google Scholar 

  • Mather TA, Tsanev VI, Pyle DM, McGonigle AJS, Oppenheimer C, Allen AG (2004) Characterization and evolution of tropospheric plumes from Lascar and Villarrica volcanoes. Chile J Geophys Res 109:D21303

    Google Scholar 

  • McBirney A (1984) Igneous petrology. Freeman Cooper, San Francisco, p 504

    Google Scholar 

  • McClelland L, Simkin T, Summers M, Nielsen E, Stein TC (eds) (1989) Global volcanism 1975–1985. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • McLean DM (1985) Deccan traps mantle degassing in the terminal cretaceous marine extinctions. Cretac Res 6:235–259

    Article  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017

    Article  Google Scholar 

  • Mooley DA, Pant GB (1981) Droughts in India over the last 200 years, their socio-economic impacts and remedial measures for them. In: Wigley TML, Ingram MJ, Farmer G (eds) Climate and history: studies in past climates and their impact on man. Cambridge University Press, New York, pp 465–478

    Google Scholar 

  • Nenes A, Seinfeld JH (2003) Parameterization of cloud droplet formation in global climate models. J Geophys Res 108(D14):4415. doi:10.1029/2002JD002911

    Google Scholar 

  • Oman L, Robock A, Stenchikov GL, Thordarson T, Koch D, Shindell DT, Gao C (2006a) Modeling the distribution of the volcanic aerosol cloud from the 1783–1784 Laki eruption. J Geophys Res 111:D12209. doi:10.1029/2005JD006899

    Article  Google Scholar 

  • Oman L, Robock A, Stenchikov GL, Thordarson T (2006b) High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys Res Lett 33:L18711. doi:10.1029/2006GL027665

    Article  Google Scholar 

  • Penner JE, Andrea M, Annegarn H, Barrie L, Feichter J, Hegg D, Jayaraman A, Leaitch R, Murphy D, Nganga J, Pitari GEA (2001). The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding YEA (eds) Climate change 2001. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Pham M, Mueller JF, Brasseur GP, Granier C, Megie G (1995) A three-dimensional study of the tropospheric sulfur cycle. J Geophys Res 100(D12):26061–26092

    Google Scholar 

  • Pinto JP, Turco RP, Toon OB (1989) Self-limiting physical and chemical effects in volcanic eruption clouds. J Geophys Res 94(D8): 11165–11174 doi:10.1029/JD094iD08p11165

    Google Scholar 

  • Pollack JB, Ackerman TP (1983) Possible effects of the El chichon volcanic cloud on the radiation budget of the northern tropics. Geophys Res Lett 10:1057–1060

    Article  Google Scholar 

  • Pollack JB, Toon OB, Sagan C, Summers A, Baldwin B, Van Camp W (1976) Volcanic explosions and climatic change: a theoretical assessment. J Geophys Res 81:1071–1083

    Google Scholar 

  • Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56:709–742

    Google Scholar 

  • Raes F, Dingenen RV, Vignati E, Wilson J, Putaud JP, Seinfeld JH, Adams P (2000) Formation and cycling of aerosols in the global troposphere. Atmos Environ 34:4215–4240

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    Article  Google Scholar 

  • Rampino MR, Ambrose SH (2000) Volcanic winter in the garden of Eden: the Toba supereruption and the late pleistocene human population crash. Geol Soc Am Spec Pap 345:71–82

    Google Scholar 

  • Rampino MR, Self S (1984) Sulphur-rich volcanic eruptions and stratospheric aerosols. Nature 310:677–679

    Article  Google Scholar 

  • Rampino MR, Self S, Stothers RB (1988) Volcanic winters. Ann Rev Earth Planet Sci 16:73–99

    Article  Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Google Scholar 

  • Robock A (2002) Blowin’ in the wind: research priorities for climate effects of volcanic eruptions. Eos Trans AGU 83(42):472

    Google Scholar 

  • Robock A, Mao J (1992) Winter warming from large volcanic eruptions. Geophys Res Lett 19:2405–2408

    Article  Google Scholar 

  • Rose WI, Chuan RL, Cadle RD, Woods DC (1980) Small particles in volcanic eruption clouds. Am J Sci 280:671–696

    Article  Google Scholar 

  • Rose WI, Chuan RL, Woods DC (1982) Smal particles in plumes of Mount St Helens. J Geophys Res 87:4956–4962

    Article  Google Scholar 

  • Rose WI, Wunderman RL, Hoffman MF, Gale L (1983) A volcanologist’s review of atmospheric hazards of volcanic activity: fuego and Mount St. Helens. J Volcanol Geoth Res 17:133–157

    Article  Google Scholar 

  • Schmincke HU (2004) Volcanism. Springer, Heidelberg, p 324

    Google Scholar 

  • Seinfeld J, Pandis S (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York, pp 1326

    Google Scholar 

  • Self S (2009) Interactive comment on “The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions”. In: Joshi MM, Jones GS (eds) Atmospheric Chemistry and Physics Discuss, vol 9, pp C216–C219

    Google Scholar 

  • Self S, Blake S, Sharma K, Widdowson M, Sephton S (2008) Sulfur and chlorine in late cretaceous deccan Magmas and eruptive gas release. Science 319:1654–1657

    Article  Google Scholar 

  • Sigmarsson O, Condomines M, Grõnvold K, Thordarson T (1991) Extreme magma homogeneity in the 1783–84 Lakagigar eruption: origin of a large volume of evolved basalt in Iceland. Geophys Res Lett 18:2229–2232

    Article  Google Scholar 

  • Sigurdsson H (2000) Volcanoes in article. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 1315–1338

    Google Scholar 

  • Sigurdsson H, Lopes-Gautier R (2000) Volcanoes in literature and film. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic Press, San Diego, pp 1339–1360

    Google Scholar 

  • Smith SJ, van Aardenne J, Klimont Z, Andres R, Volke A (2010) Anthropogenic sulfur dioxide emissions: 1850âǍş2005. Atmos Chem Phys Discuss 10:16111–16151

    Google Scholar 

  • Steingrímsson J (1788) Fullkomid skrif um Sídueld (A complete description on the Sída volcanic fire). Safn til Sögu íslands. Copenhagen, 1907–1915

    Google Scholar 

  • Steingrímsson J (1998) Fires of the Earth. The Laki eruption 1783–1784. Nordic Volcanological Institute and University of Iceland Press, Reykjavík, p 95

    Google Scholar 

  • Stevenson DS, Johnson CE, Collins WJ, Derwent RG (2003a) The tropospheric sulphur cycle and the role of volcanic SO\(_2\), Volcanic Degassing, pp 295–305

    Google Scholar 

  • Stevenson DS, Johnson CE, Highwood EJ, Gauci V, Collins WJ, Derwent RG (2003b) Atmospheric impact of the 1783–1784 Laki eruption: part I chemistry modelling. Atmos Chem Phys 3:487–507

    Article  Google Scholar 

  • Stothers RB (1996) Major optical depth perturbations to the stratosphere from volcanic eruptions: pyrheliometric period, 1881–1960. J Geophys Res [Atmos] 101:3901–3920

    Google Scholar 

  • Textor C, Graf C, Timmreck HF, Robock A (2004) Emissions from volcanoes. In: Granier C, Artaxo P, Reeves C (eds) Emissions of chemical compounds and aerosols in the atmosphere. Kluwer, Dordrecht, pp 269–303

    Google Scholar 

  • Thorarinsson S, Sigvaldason G (1972) The Hekla eruption of 1970. Bull Volcan 36:269–288. doi:10.1007/BF02596870

    Article  Google Scholar 

  • Thordarson T (1995) Volatile release and atmospheric effects of basaltic fissure eruptions. Ph.D. thesis, University of Hawaii, Honolulu

    Google Scholar 

  • Thordarson T, Self S (1993) The Laki (Skaftar Fires) and Grimsvatn eruptions in 1783–1785. Bull Volcanol 55:233–263

    Article  Google Scholar 

  • Thordarson T, Self S (1996) Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia river basalt group, Washington. J Volcanol Geoth Res 74:49–73

    Article  Google Scholar 

  • Thordarson T, Self S, Oskarsson N, Hulsebosch T (1996) Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftar fires) eruption in Iceland. Bull Volcanol 58:205–222

    Article  Google Scholar 

  • Thordarson T, Larsen G (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. J Geodyn 43:118–152

    Article  Google Scholar 

  • Thordarson T, Rampino M, Keszthelyi LP, Self S (2009) Effects of megascale eruptions on Earth and Mars. Geol Soc Am Spec Pap 453:37–53

    Article  Google Scholar 

  • Thordarson T, Self S (2003) Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. J Geophys Res [Atmos] 108(D1):4011. doi:10.1029/2001JD002042

  • Timmreck C, Lorenz SJ, Crowley TJ, Kinne S, Raddatz TJ, Thomas MA, Jungclaus JH (2009) Limited temperature response to the very large AD 1258 volcanic eruption. Geophys Res Lett 36:L21708

    Article  Google Scholar 

  • Timmreck C, Graf HF, Lorenz SJ, Niemeier U, Zanchettin D, Matei D, Jungclaus JH, Crowley TJ (2010) Aerosol size confines climate response to volcanic super-eruptions. Geophys Res Lett 37:L24705

    Article  Google Scholar 

  • Toon OB, Pollack JB (1980) Atmospheric aerosols and climate. Am Sci 68:268–278

    Google Scholar 

  • Twomey S (1974) Pollution and the planetary albedo. Atmos Environ 41:120–125

    Article  Google Scholar 

  • Twomey S (1977) Influence of pollution on shortwave Albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  • Visscher H, Looy CV, Collinson ME, Brinkhuis H, van Konijnenburg-van Cittert JHA, Kãijrschner WM, Sephton MA (2004) Environmental mutagenesis during the end-Permian ecological crisis. Proc Natl Acad Sci USA 101:12952–12956

    Google Scholar 

  • von Glasow R, Bobrowski N, Kern C (2009) The effects of volcanic eruptions on atmospheric chemistry. Chem Geol 263:131–142

    Google Scholar 

  • Wallace P, Carmichael IS (1992) Sulfur in basaltic magmas. Geochim Cosmochim Acta 56:1863–1874

    Article  Google Scholar 

  • Wang SW, Zhao ZC (1981) Droughts and floods in China, 1470–1979. In: Wigley TML, Ingram MJ, Farmer G (eds) Climate and history studies in past climates and their impact on man. Cambridge University Press, New York, pp 271–288

    Google Scholar 

  • Watson IM, Oppenheimer C (2001) Photometric observations of Mt Etna’s different aerosol plumes. Atmos Environ 35:3561–3572

    Article  Google Scholar 

  • Whitby K (1978) The physical characteristics of sulfur aerosols. Atmos Environ 12:135–159. Proceedings of the international symposium

    Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Article  Google Scholar 

  • Witham CS, Oppenheimer C (2005) Mortality in England during the 1783–1784 Laki craters eruption. Bull Volcanol 67:15–26. doi:10.1007/s00445-004-0357-7

    Article  Google Scholar 

  • Woods AW (1993) A model of the plumes above basaltic fissure eruptions. Geophys Res Lett 20:1115–1118

    Article  Google Scholar 

  • Wrigley EA, Schofield RS (1989) The population history of England 1541–1871: a reconstruction. Cambridge University Press, Cambridge 794 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, A. (2013). Motivation and Background. In: Modelling Tropospheric Volcanic Aerosol. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34839-6_1

Download citation

Publish with us

Policies and ethics